
Page 1 of 145

User Guide

OMAPL137 BIOS PSP User Guide
01.30.00

Page 2 of 145

OMAPL137 BIOS PSP User Guide

This page has been intentionally left blank.

Page 3 of 145

OMAPL137 BIOS PSP User Guide

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make
corrections, modifications, enhancements, improvements, and other changes to its products
and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should
verify that such information is current and complete. All products are sold subject to TI’s
terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the
time of sale in accordance with TI’s standard warranty. Testing and other quality control
techniques are used to the extent TI deems necessary to support this warranty. Except
where mandated by government requirements, testing of all parameters of each product is
not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers
are responsible for their products and applications using TI components. To minimize the
risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted
under any TI patent right, copyright, mask work right, or other TI intellectual property right
relating to any combination, machine, or process in which TI products or services are used.
Information published by TI regarding third–party products or services does not constitute a
license from TI to use such products or services or a warranty or endorsement thereof. Use
of such information may require a license from a third party under the patents or other
intellectual property of the third party, or a license from TI under the patents or other
intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if
reproduction is without alteration and is accompanied by all associated warranties,
conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered
documentation.

Resale of TI products or services with statements different from or beyond the parameters
stated by TI for that product or service voids all express and any implied warranties for the
associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright ©2009, Texas Instruments Incorporated

Page 4 of 145

OMAPL137 BIOS PSP User Guide

This page has been intentionally left blank.

Page 5 of 145

OMAPL137 BIOS PSP User Guide

TABLE OF CONTENTS

1 Top level Information... 9
1.1 Introduction ..9
1.2 Naming Conventions...10
1.3 Installation Guide...11
1.4 Integration Guide...15
1.5 Power Management ..16

2 UART driver.. 19
2.1 Introduction ..19
2.2 Installation..19
2.3 Features ...21
2.4 Configurations ...22
2.5 Control Commands...24
2.6 Use of UART driver through GIO APIs ...24
2.7 Sources that need re-targeting ..25
2.8 EDMA3 Dependency ...26
2.9 Known Issues ..26
2.10 Limitations ..26
2.11 Uart Sample applications...26

3 I2C driver... 29
3.1 Introduction ..29
3.2 Installation..29
3.3 Features ...31
3.4 Configurations ...31
3.5 Control Commands...34
3.6 Use of I2C driver through Stream APIs ...35
3.7 Sources that need re-targeting ..36
3.8 EDMA3 Dependency ...36
3.9 Known Issues ..36
3.10 Limitations ..36
3.11 I2c Sample applications ..36

4 GPIO driver .. 40
4.1 Introduction ..40
4.2 Installation..40
4.3 Features ...42
4.4 Configurations ...43
4.5 Gpio Bank Event Numbers...45
4.6 Sources that need re-targeting ..45
4.7 Known Issues ..45
4.8 Limitations ..45
4.9 Gpio Sample application..45

5 LCDC Raster Controller Driver .. 47
5.1 Introduction ..47

Page 6 of 145

OMAPL137 BIOS PSP User Guide

5.2 Installation..47
5.3 Features ...49
5.4 Configurations ...50
5.5 Control Commands...53
5.6 Use of RASTER driver through SIO APIs ..54
5.7 Sources that need re-targeting ..56
5.8 EDMA3 Dependency ...56
5.9 Known Issues ..56
5.10 Limitations ..56
5.11 Raster Sample Application...56

6 LCDC LIDD Controller Driver .. 59
6.1 Introduction ..59
6.2 Installation..59
6.3 Features ...61
6.4 Configurations ...61
6.5 Control Commands...63
6.6 Use of LIDD driver through GIO APIs ..64
6.7 Sources that need re-targeting ..66
6.8 EDMA3 Dependency ...66
6.9 Known Issues ..66
6.10 Limitations ..66
6.11 LIDD Sample Application...66

7 SPI driver... 68
7.1 Introduction ..68
7.2 Installation..68
7.3 Features ...70
7.4 Configurations ...71
7.5 Control Commands...74
7.6 Use of SPI driver through GIO APIs ..74
7.7 Use of GPIO as chip select...75
7.8 Sources that need re-targeting ..77
7.9 Use of GPIO as chip select...77
7.10 EDMA3 Dependency ...77
7.11 Known Issues ..77
7.12 Limitations ..77
7.13 Spi Sample applications ..77

8 PSC driver .. 81
8.1 Introduction ..81
8.2 Installation..81
8.3 Features ...82
8.4 Use of PSC driver through module APIs...82
8.5 Sources that need re-targeting ..82
8.6 EDMA3 Dependency ...82
8.7 Known Issues ..82
8.8 Limitations ..82

Page 7 of 145

OMAPL137 BIOS PSP User Guide

9 Mcasp driver... 83
9.1 Introduction ..83
9.2 Installation..84
9.3 Features ...85
9.4 IDLE Time Data Patterns ...89
9.5 Explicit control of IO PINS ...90
9.6 Clocking McASP..91
9.7 Clock Configuration (EVM6747)..92
9.8 Configurations ...92
9.9 IO Request Format ...95
9.10 CACHE Control...95
9.11 Control Commands...96
9.12 Use of PSP driver through SIO APIs ..97
9.13 Timeline of Frame Sync, High Clock and or Bit Clock generation.................98
9.14 Porting Guide...98
9.15 Sources that need re-targeting ..99
9.16 EDMA3 Dependency ...99
9.17 How to support “NEW” data format...99
9.18 Known Issues ..99
9.19 Limitations ..99
9.20 Mcasp DIT Sample application ...99
9.21 McASP Sample application... 100

10 Audio driver ... 102
10.1 Introduction .. 102
10.2 Installation.. 102
10.3 Features ... 103
10.4 Configurations ... 104
10.5 Control Commands... 105
10.6 Use of Audio driver through SIO APIs ... 105
10.7 Sources that need re-targeting .. 106
10.8 EDMA3 Dependency ... 106
10.9 Known Issues .. 106
10.10 Limitations .. 106
10.11 Audio Sample Application .. 106
10.12 Dependencies .. 107

11 AIC31 CODEC driver ... 110
11.1 Introduction .. 110
11.2 Installation.. 110
11.3 Features ... 111
11.4 Configurations ... 112
11.5 Control Commands... 113
11.6 Use of AIC31 driver through SIO APIs... 114
11.7 Sources that need re-targeting .. 115
11.8 EDMA3 Dependency ... 115
11.9 Known Issues .. 115
11.10 Limitations .. 115

Page 8 of 145

OMAPL137 BIOS PSP User Guide

12 BLOCK MEDIA driver .. 116
12.1 Introduction .. 116
12.2 Installation.. 116
12.3 Configurations ... 118
12.4 Block media driver API’s.. 119
12.5 Use of Block media driver for RAW application interface 123
12.6 Use of Block Media driver for File System Interface 125
12.7 Sources that need re-targeting .. 126
12.8 EDMA3 Dependency ... 126
12.9 Known Issues .. 126
12.10 Limitations .. 126
12.11 Block Media Sample application.. 127
12.12 Dependencies .. 127

13 MMCSD driver... 130
13.1 Introduction .. 130
13.2 Installation.. 130
13.3 Features ... 131
13.4 Configurations ... 132
13.5 Control Commands... 133
13.6 MMCSD Driver APIs .. 135
13.7 Sources that need re-targeting .. 136
13.8 EDMA3 Dependency ... 136
13.9 Known Issues .. 136
13.10 Limitations .. 136
13.11 MMCSD Sample applications .. 136

14 NAND driver ... 138
14.1 Introduction .. 138
14.2 Installation.. 138
14.3 Features ... 139
14.4 Configurations ... 140
14.5 Control Commands... 143
14.6 NAND Driver APIs... 144
14.7 Sources that need re-targeting .. 144
14.8 EDMA3 Dependency ... 144
14.9 Known Issues .. 144
14.10 Limitations .. 144
14.11 NAND Sample applications .. 144

Page 9 of 145

OMAPL137 BIOS PSP User Guide

1 Top level Information

1.1 Introduction

This chapter introduces the OMAPL137 BIOS PSP to the user by providing a brief
overview of the purpose and construction of the OMAPL137 BIOS PSP, along with
hardware and software environment specifics in the context of the OMAPL137 BIOS
PSP deployment.

1.1.1 Overview

The OMAPL137 BIOS PSP is aimed at providing fundamental software abstractions
for on-chip resources and plugs the same into DSP/BIOS operating system so as to
enable and ease application development by providing suitably abstracted interfaces.

1.1.2 Terms and Abbreviations

API Application Programming Interface

CSL TI Chip Support Library – primitive h/w abstraction.

IP Intellectual property

ISR Interrupt Service Routine

OS Operating System

ID Installation Directory

MMC Multi-media Card

SD Secure Digital

RTFS/ERTFS File System

1.1.3 References

1 SPRS377A OMAPL137 SoC reference Guide

2 SPRU616 DSP/BIOS Device Driver Developer's Guide

3 SPRU403 TMS320C6000 DSP/BIOS Appplication Programming
Interface

4 SPRU423 TMS320 DSP/BIOS
User’s Guide

Page 10 of 145

OMAPL137 BIOS PSP User Guide

1.1.4 Supported Services and features

The OMAPL137 BIOS PSP provides the following:

 Device drivers for UART, I2C, SPI, McASP, PSC, MMCSD, NAND, LCDC
Raster,LCDC lidd and EVM specific drivers like the Aic31 codec driver.

 Block Media Interface for storage drivers like MMCSD, NAND etc.

 Sample applications that demonstrate use of drivers for UART (loop back &
Echo Test), I2C (writes to on board EEPROM), SPI (Serial Flash), McASP
(Plays a tone, EVM to EVM communication example), MMCSD and NAND
(Read/Write to the storage devices).

 rCSL and Examples for selected peripherals

1.1.5 System Requirements

The following products are required to be installed prior to using the OMAPL137 BIOS
PSP:

 EDMA 3 LLD – This package (OMAPL137 BIOS PSP) is compatible with EDMA 3
LLD versioned 01.11.00.02 or above

 DSP-BIOS versioned 5.41.02.14

 CCS 3.3.24 or higher with service release 10

 CCS 4.0.0.16 or higher (optional)

 Code Generation Tools 6.1.9

 XDS 510 USB Emulator (Optional) – EVM has on board emulator

 EVMOMAPL137 Board

 ERTFS File System (Optional). This is required if one wants to maintain a
filesystem on Storage Media. Same can be downloaded from following link:
http://software-
dl.ti.com/dsps/dsps_registered_sw/sdo_sb/targetcontent//bios_file_system/index.html

1.2 Naming Conventions
The DSP/BIOS 5 PSP drivers in this release were written based on already existing
DSP/BIOS 6 PSP drivers. As such, it has been decided to maintain the same
DSP/BIOS 6 naming schema for constants and modules in the driver code for
consistency.

This means that module names for drivers may not be all upper case, but would
have the first letter of the module name capital, followed by lower case letters. For
example, the GPIO module is named:

Gpio

Constants for the Gpio module are all upper case, except that they are preceded by
the module name in which they are defined. The module name which precedes is
cased as described previously. One example of a Gpio module constant is:

Gpio_NUM_BANKS

This is slightly different than the normal, all uppercase naming convention found in
DSP/BIOS 5, but it was done so in order to lessen confusion for the user.

Page 11 of 145

OMAPL137 BIOS PSP User Guide

1.3 Installation Guide

This chapter discusses the OMAPL137 BIOS PSP installation, how and what software
and hardware components to be availed in order to complete a successful installation
(and un-installation) of the OMAPL137 BIOS PSP.

1.3.1 Installation and Usage Procedure

1.3.1.1 Installation procedure for DSP/BIOS

1. Install the following products mentioned in system requirements sections, as per
instructions provided along with the products.

2. Install the PSP package (BIOSPSP_xx_yy_zz_bb_Setup.exe) using the self
extracting installer

3. Install EDMA-3 LLD Device Driver into preferred drive / folder

4. Ensure that environment variable ‘EDMA3LLD_BIOS5_INSTALLDIR’ is set to the
packages folder of the EDMA3 installation. (e.g. If the EDMA3 LLD Driver is
installed into “c:\edma3_lld_xx_yy_zz\” then set the environment variable as
follows: EDMA3LLD_BIOS5_INSTALLDIR =c:\edma3_lld_xx_yy_zz\packages)

5. Optionally, if user wants to use RTFS File system install the Files system to
preferred location. Ensure that environment variable ‘RTFS_INSTALL_DIR’ is set
to the RTFS installation directory.

6. For building the downloadable images refer to section 1.4

7. Download the executable image of the required application onto your platform
using CCS.

8. Run the program

Please see the help on package locations and API information help that is generated
from doxygen, found under the docs folder for each driver.

1.3.1.2 Un-Installation

1. Uninstall the PSP package by using the uninstall.exe in the package directory.

2. Un-install the products (listed in system requirements) as per instructions
provided with the product(optional and at user’s discretion)

 EDMA3 LLD Device Driver un-installation

 CCS & DSP/BIOS Product un-installation

 Code generation tools un-installation

Page 12 of 145

OMAPL137 BIOS PSP User Guide

1.3.2 PSP Component Folder

This section details the files and directory structure of the installed package in the
system. A view graph of the actual directory tree (as seen in the final deployed
environment is inserted here for clarity.

1.3.2.1 Top level PSP Directory structure:

Figure 1: BIOS PSP Top level directory structure

The sections below describe the folder contents.
pspdrivers_

Contains the device drivers and other PSP components. Top level
installation directory

docs
Contains release notes and users’ guide for this PSP package.

cslr
Contains the register level chip support for OMAPL137 and usage
examples

examples
Contains the sample applications for drivers provided as part of this
package

platforms
Contains platform specific modules like codec drivers, interface
modules etc., which may be specific to the EVM/Platform

All drivers are organized under ti/pspiom directory under their individual directories.
For example, the UART driver is placed under ti/pspiom/Uart.

1.3.2.2 Driver Directory structure:

Each driver directory (ti/pspiom/<peripheral>) is further organized as follows:

Page 13 of 145

OMAPL137 BIOS PSP User Guide

Figure 2: OMAPL137 PSP driver directory structure

docs
Contains peripheral specifically documentation like Architecture
documentation, datasheet etc.

lib
Contains generated driver library file(s)

src
Contains the source file(s) for the BIOS PSP driver module

1.3.2.3 examples Directory structure:

Each driver sample application (ti/pspiom/examples/<peripheral>) is
further organized as follows:

Figure 3: OMAPL137 PSP driver sample application directory structure

evmOMAPL137

Contains the EVM/platform specific examples

Each sample example directory is further organized as shown below:

Edma (or Interrupt)

Contains specific files to demonstrate EDMA (or Interrupt) mode of
operation

Build

Contains CCS3 project specific files
Src

Contains the example application source files

1.3.2.4 platforms Directory structure:

Each platform related specific driver modules are further organized as:

Page 14 of 145

OMAPL137 BIOS PSP User Guide

docs
Contains documentation related to the component

lib
Contains generated library file(s)

src
Contains source file(s)

Page 15 of 145

OMAPL137 BIOS PSP User Guide

1.4 Integration Guide

This chapter discusses the OMAPL137 BIOS PSP package usage. As part of the PSP
package, a demo application is provided to check the basic functionality for each of
the device/driver.

1.4.1 Building the PSP Sample Applications

The PSP package contains separate sample applications for each of the BIOS drivers
provided BIOS driver components (except PSC). These sample applications can be
built using CCS v3.3 project files or the CCSv4 project files.

1.4.2 BIOS PSP EVM Library Module

1.4.2.1 Description

The sample applications available in the package demonstrate the usage of the BIOS
PSP drivers for DSP BIOS 5.41.x on EVM OMAPL137 platform. For successful
operation of the applications, some basic initialization (ex., removing the peripheral
out of sleep and powering it, configuring the pin multiplexers for the peripherals used
etc) needs to performed. These initialization steps however are dependent on the
SoC specifically.

Apart from this, the sample application may also have to do tasks specific to EVM on
which it is intended to run. For instance, in case of LCDC or NAND applications for
EVMOMAPL137, one needs to select the LCDC or NAND peripheral since same pins
are shared between them. This is achieved by configuring GPIO expander IC on the
UI board.

The above mentioned initialization sequence, though necessary for a sample
application to run successfully, become too much of a code information for a first
time user of the sample application who would just like to have a look at the code
and get a feel of the driver usage example.

Hence, in order to abstract the platform (EVM) specific initialization, these routines
are organized as a separate library evmInit.lib. This library has the routines for the
platform/EVM specific tasks. This helps in making the actual sample application
simpler.

The platform directory has EVM specific code required by each module. All the EVM
related information is placed inside file <module>_evmInit.c. This contains the code
for any driver creation function required by the module, PSC init for the module,
PINMUX settings for the module, any configuration required to be done by using the
driver (like GPIO expander) etc. This folder also contains an entry in the
configuration (*.tci) file required for the creation of “dependency” drivers which will
be used by that sample application.

The evmInit library files can be found under
<ID>\packages\ti\pspiom\platforms\evmXXX and contain:

1. Platform specific initialization routines in xxx_evmInit.c

2. Platform specific init configuration files in xxx.tci

3. Platform library project file evmInit.pjt

Page 16 of 145

OMAPL137 BIOS PSP User Guide

4. Platform initialization library evmInit.lib
Note: MMCSD and NAND are not IOM based drivers, so a file named
<module>_startup is added for initializing these drivers. The routines in this file
initialize the EDMA, Block Media and the specific modules.

1.4.2.2 Building the EVM library module

Please build the

<ID>\packages\ti\pspiom\platforms\evmOMAPL137\build\ccs3\evmInit.pjt

1.5 Power Management
The drivers implement power management by means of gating respective LPSC
modules. This is implemented by enabling the LPSC as long as the driver has
requests/packets pending to be completed and disabling the PSC when there are no
requests/packets pending to be completed. The device parameter (devParam)
“pscPwrmEnable” should be set to TRUE, for power management to be enabled.
Also the following code should be added to the tcf file to initialize the PSC module
count.

bios.GBL.CALLUSERINITFXN = 1;

bios.GBL.USERINITFXN = prog.extern("commonInit");

Also, if a user wishes not to enable any power management functionality at all in the
driver (default behavior), one could do so by supplying the “pscPwrmEnable”
device/instance parameter as FALSE during device creation. In this case the PSC is
enabled once during driver instantiation and disabled once during driver instance
deletion.

Note:

1. DSP/BIOSTM based power management support is currently for C6748 and
OMAPL138 based platform only. Only PSC power support is enabled for the
C6747 platform.

2. A new instance parameter “pllDomain” has been added for power management
support. This feature is not applicable for C6747 platform and any value set here
does not affect the driver functionality. The legacy users shall need to recompile
their applications for the changes in device parameters.

3. DSP/BIOSTM based power management is not available for C6747 and OMAPL137
platforms. It is available only for C6748 and OMAPL138 platforms. Hence,
BIOS_PWRM_ENABLE must not be enabled for C6747 and OMAPL137, which
would result in compilation error.

1.5.1 Building the BIOS PSP Driver Modules

BIOSPSP drivers and sample application provide support for both CCS3 and CCS4
build environments. The two build setup/project files are located in the build folder of
the respective driver/sample application directories. Each of the projects are
contained in ccs3 and ccs4 directories in the build folder.

Upon successful installation the BIOSPSP installer creates an environmental variable
“BIOS5PSP_INSTALL_DIR” which can be used to refer to the installation directory of
BIOSPSP package. This is supposed to provide for CCS3 build environments. CCS4
build environments should use the workspace and macros concept as described
below.

 CCS3 build setup

Please build individual drivers using CCS v3.3 pjt files provided.

Page 17 of 145

OMAPL137 BIOS PSP User Guide

 CCS4 build setup

The project in the CCS4 build folder needs to be imported via CCS4 into a
workspace. Once imported, a workspace specific macro “BIOS5PSP_INSTALL_DIR” is
created for the workspace use. This is used to refer to the linked
source/configuration files in the project. Since this is a relative path, this resolves
into the actual installation directory once imported into the workspace.

If a user has not imported the drivers/sample application, then the install directory
macro is not created in the workspace. In such a case the user needs to manually
create this macro in the workspace.

Also, user may have to update the versions for DSP/BIOSTM, Code generation tools
etc for the workspace created.

1.5.2 BIOS drivers sample Application:

UART – The sample application demonstrates the use of the UART driver by
performing reading and writing of messages and input characters from and to serial
terminal of a host PC. (Tera Term or hyper terminal could be used as a serial
terminal on Host PC)

I2C – The sample application demonstrates the use of the I2C driver by reading and
writing data to the I2C EEPROM on the EVM

SPI - The sample application demonstrates the use of the SPI driver by writing 64
bytes of known data into serial flash, then reading back the written data and
validating it.

McASP/Audio – The sample applications demonstrates the use of the McASP driver by
playing an input song/tone via LINE IN. A speaker may be connected to the LINE
OUT.

MMCSD – The sample applications demonstrates the use of the MMCSD driver using
the RAW interface by showing the usage of various IOCTLS, writes to the media and
verify the data written by reading it back. For using the media with File system refer
to the sample application provided with the File system package.

NAND – The sample applications demonstrates the use of the NAND driver using the
RAW interface by showing the usage of various IOCTLS, writes to the media and
verify the data written by reading it back. For using the media with File system refer
to the sample application provided with the File system package.

LCDC Raster – The sample application demonstrates the use of the LCDC Raster
controller driver by displaying a static RGB stripe image, with a line scrolling on it.

LCDC LIDD – The sample application demonstrates the use of the LCDC LIDD
controller driver by displaying a welcome message and doing basic operation in the
display.

Page 18 of 145

OMAPL137 BIOS PSP User Guide

1.5.3 CSL Layer usage example

Sample code is provided to demonstrate the usage of CSL Register Layer with
selected peripherals examples. The sample application building for CSL examples are
similar to that of the driver sample applications explained above. For more
information on CSL layer usage, please refer to the user guide located at,
pspdrivers_xx_yy_zz\packages\psp\om\cslr\docs\cslr_userguide.doc.

1.5.4 On board DIP Switch Configuration

The following is the default switch configuration. Please refer EVM reference guide
from the EVM manufacture for more information on these switches.

CPU Board KEY DIP Switches Configurations

SW3

1 ■

2 ■

3 ■

4 ■

SW5

1 ■

2 ■

3 ■

4 ■

5 ■

6 ■

SW2

1 ■

2 ■

3 ■

4 ■

5 ■

6 ■

Page 19 of 145

OMAPL137 BIOS PSP User Guide

2 UART driver

2.1 Introduction
This section is the reference guide for the UART device driver which explains the
features and tips to use them.

DSP/BIOS applications use the driver typically through APIs provided by BIOS
module GIO, to transmit and receive serial data. The following sections describe in
detail, procedures to use this driver and configure it. It is recommended to go
through the sample application to get familiar with initializing and using the Uart
driver.

2.1.1 Key Features

 Multi-instance support and re-entrant driver

 Each instance supports a transmit channel and a receive channel

 Supports Polled, Interrupt and DMA Interrupt Mode of operation

2.2 Installation
The UART device driver is a part of BIOSPSP product for OMAPL137 and would be
installed as part of product installation.

2.2.1 UART Component folder

On installation of BIOSPSP package for the OMAPL137, the UART driver can be found
at <ID>\ ti\pspiom\uart\

As shown above, the uart folder contains several sub-folders, the contents of which
are described below:

 uart - The uart folder is the place holder for the entire UART driver. This
folder contains Uart.h which is the header file included by the application.

 build – contains CCS 3.3 / CCS 4 project file to build Uart library.

 docs – Contains doxygen generated API reference.

 lib – Contains Uart libraries

 src – Contains Uart driver’s source code.

2.2.2 Build Options

The Uart library can be built using the CCS v3.3 project file located at
<ID>\packages\ti\pspiom\uart\build\OMAPL137\ccs3\uart.pjt. This project file
supports the following build configurations.

IMPORTANT NOTE:

Page 20 of 145

OMAPL137 BIOS PSP User Guide

All build configurations require environment variable
%EDMA3LLD_BIOS5_INSTALLDIR% to be defined. This variable must point to
“<EDMA3_INSTALL_DIR>\packages”.

Debug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

 Defines “-DUart_EDMA_ENABLE” to enable EDMA3 support in Uart driver. It
also contains “-i%EDMA3LLD_BIOS5_INSTALLDIR%” to find EDMA3 header
files.

iDebug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

 Defines “-DUart_EDMA_ENABLE” to enable EDMA3 support in Uart driver. It
also contains “-i%EDMA3LLD_BIOS5_INSTALLDIR%” to find EDMA3 header
files.

 Defines “Uart_DEBUGPRINT_ENABLE to enable Uart driver to LOG debug
messages.

Release:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

 Defines “-DUart_EDMA_ENABLE” to enable EDMA3 support in Uart driver. It
also contains “-i%EDMA3LLD_BIOS5_INSTALLDIR%” to find EDMA3 header
files.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

iRelease:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

 Defines “-DUart_EDMA_ENABLE” to enable EDMA3 support in Uart driver. It
also contains “-i%EDMA3LLD_BIOS5_INSTALLDIR%” to find EDMA3 header
files.

 Defines “Uart_DEBUGPRINT_ENABLE to enable Uart driver to LOG debug
messages.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

2.2.2.1 Required and Optional Pre-defined symbols

The Uart library must be built with an SOC specific pre-defined symbol.

“-DCHIP_OMAPL137” is used above to build for OMAPL137. Internally this define
is used to select a soc specific header file (soc_OMAPL137.h). This header file
contains information such as base addresses of uart devices, their event
numbers, etc.

The Uart library can also be built with these optional pre-defined symbols.

Page 21 of 145

OMAPL137 BIOS PSP User Guide

Use -DUart_EDMA_ENABLE when building library to enable DMA support in Uart
driver. If this symbol is not defined edma specific code will get eliminated and the
driver can be used only in POLLED or INTERRUPT mode.

Use -DPSP_DISABLE_INPUT_PARAMETER_CHECK when building library to turn
OFF parameter checking. This symbol is defined for Release and iRelease profiles
by default in the CCS 3.3 pjts provided.

Use -DNDEBUG when building library to turn off runtime asserts. This symbol is
defined for Release and iRelease profiles by default in the CCS 3.3 or CCS4 pjts
provided.

2.3 Features
This section details the features of UART and how to use them in detail.

2.3.1 Multi-Instance

The UART driver can operate on all the instances of UART on the EVMOMAPL137.
Different instances may be specified during driver creation time, and instances 0
through 2 with corresponding device IDs 0 through 2 are supported, respectively.

These instances can operate simultaneously with configurations supported by the
UART driver. UART instances are created as follows:

1. Static creation – static creation is done in the “tcf” file of the
application; this creation happens at build time. The UDEV module
(UDEV.create) is used during static configuration. An instance of the UDEV
module at static configuration time corresponds to creating and initializing
an UART instance

2. Dynamic creation – Dynamic creation of an UART instance is done in
the application source files by calling DEV_createDevice(); this creation
happens at runtime.

UDEV.create and DEV_createDevice allow user to specify the following:

 iomFxns: Pointer to IOM function table. UART requires this field to be
Uart_IOMFXNS.

 initFxn: UART requires that the user call UART_init() as part of this initFxn.
Users can also directly hook in UART_init().

 device parameters: UART requires the user to pass an Uart_Params struct.
This struct must exist in the application source files and it must be initialized
very early as part of driver specific initFxn.

 deviceId to identify the UART peripheral. This parameter decides on the
instance to which this driver is binding. In case of static driver creation this
parameter needs to be modified at TCF/TCI files

For more information on configuring UDEV and Uart, please refer to the Uart sample
application (included with this driver release), and the DSP/BIOS API Reference
(spru403o.pdf, included in your DSP/BIOS installation).

2.3.2 Each Instance as Transmitter and / or receiver

Each instance of the UART driver can be used for creating channels for transmit and
receive operation. This could be achieved by opening a stream Channel as an INPUT
channel and opening a stream Channel as an OUTPUT channel. The type of Channel
is specified while creating the channel (using GIO_create ()specify “IOM_OUTPUT”

Page 22 of 145

OMAPL137 BIOS PSP User Guide

or “IOM_INPUT”). The configuration parameters are explained in the sections to
follow.

2.3.3 Support for baudrates greater than 115200

The UART driver does not impose a restriction configuring the UART peripheral for
baudrates greater than 115200 baud. However, when configuring for higher
baudrates, one needs to tweak the parameter rxThreshold and softTxThreshold
(detailed below in Uart_Params).

2.4 Configurations
Following tables document some of the configurable parameter of UART. Please refer
to Uart.h for complete configurations and explanations. Please refer the sample code
as reference to change the default parameter values from the application

2.4.1 Uart_Params

This structure defines the device configurations, expected to supply while
instantiating the driver known as “devParams”.

Members Description

enableCache Whether the submitted buffers are in cacheable
memory.

fifoEnable Whether the HW FIFO for the device is to enabled

opMode Whether the UART driver should operate in Polled or
Interrupt or DMA Interrupt Mode

loopbackEnabled If the driver/device works in loopback mode

baudRate The baudrate to be set for the HW Instance

stopBits Number of stop bits for data transfer

charLen Data word length for Tx/Rx

parity Should Even/Odd parity or No parity should be used

rxThreshold FIFO data threshold for RX to raise a receive data
interrupt

fc Whether any flowcontrol for data transfer should be
used

edmaRxTC/edmaRxTC EDMA TCs for transmit and receive

hwiNumber The hardware interrupt number assigned for UART
events

polledModeTimeout The data transfer timeout for polled mode of operation

softTxThreshold This is a software parameter (not a hardware setting),
If this element is not equal to 1, then the number of
bytes requested to transmit for each IO request must
be multiple of this element.

pscPwrmEnable Boolean flag to enable (TRUE) or disable (FALSE) any
power management in the driver.

pllDomain Not used

Page 23 of 145

OMAPL137 BIOS PSP User Guide

Note on softTxThreshold and rxThreshold:-

In case DMA transfer mode the generation of EDMA sync event from UART to the
EDMA peripheral in case of receive depends on the receive FIFO threshold level.
Once the reveive FIFO threshold is reached (so many bytes received into the
RXFIFO) the sync event to EDMA is generated and the EDMA transfer the bytes from
the FIFO to the destination buffer depending on the transfer parameters
programmed for this transfer. Similarly, for more flexibility in programming the
transmit operation softTxThreshold is added as a device parameter above. The
UART driver now programs the EDMA in AB sync mode. The B count for the EDMA
transfer parameter for receive is programmed equal to the “rxThreshold” and the
transmit B count is programmed equal to the “softTxThreshold”. The users can
tweak these parameters as required. However, there is one limitation while
setting the rxThreshold and softTxThreshold. If these are not equal to one,
then the data length should be integral multiples of these values. Else,
during receive remainder bytes (< rxThreshold) may not be sufficient to
trigger the EDMA event and during transmit the EDMA may not pick up the
remainder bytes from the buffer, since remainder bytes are not
programmed at all.

Apart from the instance parameters described above module wide constants declared
in Uart.h can be changed e.g Uart_TASKLET_PRIORITY. These constants apply to all
Uart instances.

Build options can also be added or removed to add/remove features. e.g –
DUart_EDMA_ENABLE.

2.4.2 Uart_ChanParams

Applications could use this structure to configure the channel specific configurations.
This is provided when driver channels are created (e.g. GIO_create).

Members Description

hEdma
The handle to the EDMA driver. Required only when operating
in DMA interrupt mode. Also, note that when operating in DMA
interrupt mode, -DUart_EDMA_ENABLE must be defined

2.4.3 Polled Mode

The configurations required for polled mode of operation are:

Instance configuration opMode should be set to Uart_OpMode_POLLED. Additionally
the timeout parameter for the data transfer operation can be configured as required.
For example, polledModeTimeout could be set to 1000000 ticks, while the default
value is BIOS_WAIT_FOREVER.

2.4.4 Interrupt Mode

The configurations required for interrupt mode of operation are:

Instance configuration opMode should be set to Uart_OpMode_INTERRUPT.
Additionally the hwiNumber assigned by the application for the UART CPU events
group should be passed, so that the driver can enable proper interrupts. It is
recommended to start from the sample application and modify it further to meet the
need of the actual application.

Page 24 of 145

OMAPL137 BIOS PSP User Guide

2.4.5 DMA Interrupt Mode

The configurations required for DMA Interrupt mode of operation are:

Instance configuration opMode should be set to Uart_OpMode_DMAINTERRUPT.
Additionally the hwiNumber assigned by the application for the UART CPU events
group should be passed, so that the driver can enable proper interrupts. The driver
must also be built with –DUart_EDMA_ENABLE. Also, as part of chanParams, the
handle to the EDMA driver, hEdma, should be passed by the application.

2.5 Control Commands
Following table describes some of important the control commands, for a
comprehensive list please refer the IOCTL defined in Uart.h

Command Arguments Description

Uart_IOCTL_SET_BAUD Uart_BaudRate
*

Configures the baud rate for
the UART instance

Uart_IOCTL_SET_STOPBIT
S

Uart_NumStopB
its *

Configures the number of stop
bits for the instance

Uart_IOCTL_SET_DATABIT
S

Uart_NumStopB
its *

Configures the word length for
transmission and reception

Uart_IOCTL_SET_PARITY Uart_Parity * Configures the parity for data
transmission and reception

Uart_IOCTL_SET_FLOWCON
TROL

Uart_FlowCont
rol *

Configures the flow control
for the data
transmission/reception

Uart_IOCTL_SET_TRIGGER
_LEVEL

Uart_RxTrigLv
l *

Configures the trigger level
the receive fifo full level

Uart_IOCTL_RESET_RX_FI
FO

None Resets the hardware receive
FIFO

Uart_IOCTL_RESET_TX_FI
FO

None Resets the hardware transmit
FIFO

Uart_IOCTL_CANCEL_CURR
ENT_IO

None Cancels the current IO
operation request I progress

Uart_IOCTL_GET_STATS Uart_Stats * Passes the statistics of
driver operation to the user

Uart_IOCTL_CLEAR_STATS None Resets/Clears the driver
statistics

Uart_IOCTL_FLUSH_ALL_R
EQUEST

None Cancels all the I/O operations
queued

Uart_IOCTL_SET_POLLEDM
ODETIMEOUT

Uint32 * Change the value for polled
mode timeout

2.6 Use of UART driver through GIO APIs
Following sections explain the use of parameters of GIO calls in the context of PSP
driver. Note that no effort is made to document the use of GIO calls; only PSP
specific requirements are covered below.

Page 25 of 145

OMAPL137 BIOS PSP User Guide

2.6.1 GIO_create

Parameter
Number

Parameter Specifics to PSP

1 Device Name string

Unique identifier used to identify this
driver. Please note the name should be
same as specified while creating the driver.
(Either through tcf or DEV_createDevice()

2 Channel Mode
Should be “IOM_INPUT” when UART
requires to received data and “IOM_OUTPUT”
when UART requires to transmit

3 Status Address to place return status from Uart.

4 Channel Params Pointer to chanParams structure for Uart
channel.

5 GIO_Attrs * Parameters required for the creation of the
GIO instance (e.g. channel parameters)

2.6.2 GIO_control

Parameter
Number

Parameter Specifics to PSP

1 GIO_Handle Handle returned by GIO_create

2 Command IOCTL command defined by UART driver

3 Arguments Misc arguments if required by the command

2.6.3 GIO_write/read

Parameter
Number

Parameter Specifics to PSP

1 Channel Handle Handle returned by GIO_create

2 Pointer to buffer
Should be pointer to the buffer that holds
data for transfer or take data in case of
receive

3 Pointer to size of
buffer

Size of the transaction

2.7 Sources that need re-targeting

2.7.1 ti/pspiom/cslr/soc_OMAPL137.h (soc specific header file):

This file contains target (SoC) specific definitions. In most cases, changing the values
for the of SoC specific details done here should suffice. However, if there are major
changes in the hardware instance then the driver file may be needed to change.

Page 26 of 145

OMAPL137 BIOS PSP User Guide

2.8 EDMA3 Dependency
UART driver relies on EDMA3 LLD driver to move data from/to application buffers to
peripheral; typically EDMA3 driver is PSP deliverable unless mentioned otherwise.
Please refer to the release notes that came with this release. Please ensure that
current PSP release is compliant with version of EDMA3 driver being used.

2.8.1.1 Used Paramset of EDMA 3

BIOSPSP UART driver uses TWO paramsets of EDMA3 per instance – one for Tx and
another for Rx; if there are no paramsets are available the PSP driver creation would
fail. These paramsets are used through the life time of PSP driver. No link paramsets
are used.

2.9 Known Issues
Please refer to the top level release notes that came with this release.

2.10 Limitations
Please refer to the top level release notes that came with this release.

2.11 Uart Sample applications

2.11.1 Interrupt mode sample

2.11.1.1 Description:

This sample demonstrates the use of the Uart driver in interrupt mode.

The Uart driver is configured statically in uartSample.tci file. The initFxn and
uartParams used in UDEV.create are globals declared in uartSample.c.

The uartSample.tcf file contains the remaining BIOS configuration. The most
important lines in this file which the application may need to pull into his tcf file are
as follows.

bios.ECM.ENABLE = 1;

bios.HWI.instance("HWI_INT8").interruptSelectNumber = 1;

These lines configure the ECM module and map Uart events to CPU interrupts. For
example the Uart event number is 38 which falls in ECM group 1. Here ECM group 1
is mapped to HWI_INT8.

The main() function configures the PINMUX and uses the Psc module to enable the
Uart peripheral.

The echo() task exercises the Uart driver. It uses GIO APIS to create uart channels
amd read and write to them.

The user_uart0_init() calls Uart_init() and initializes the Uart_Params structure.

2.11.1.2 Build:

 This sample can be built using

<ID>/packages/ti/pspiom/examples/evmOMAPL137/uart/interrupt/build/ccs3/uartSa
mple.pjt

IMPORTANT NOTE: uartSample.pjt contains references to
%EDMA3LLD_BIOS5_INSTALLDIR% environment variable and links with edma3
libraries. This is required because by default the Uart driver library is built with –
DUart_EDMA_ENABLE. The user can remove all references of EDMA3 from
uartSample.pjt if he re-builds the Uart library without –DUart_EDMA_ENABLE.

Page 27 of 145

OMAPL137 BIOS PSP User Guide

2.11.1.3 Setup:

You need to connect a NULL Model cable from the evmOMAPL137 platform to a host
PC. On the host an application like HyperTerminal needs to be setup for appropriate
COM port, baud rate etc.

2.11.1.4 Output:

 When the sample runs, it will output the following string to the Uart output
channel.

“UART Demo Starts: INPUT a file of size 1000 bytes".

 The user needs to type or send 1000 bytes. The user could make use of the
sample.txt file provided with the package at
ti\pspiom\examples\evmOMAPL137\uart\<edma/interrupt>. This file contains
1000 characters of data

 This sample application will echo the received characters to the terminal.

2.11.2 Dma mode sample

2.11.2.1 Description:

This sample demonstrates the use of the Uart driver in DMA mode.

The Uart driver is configured statically in uartSample.tci file. This file can be directly
imported into an application’s tcf script. The initFxn and uartParams used in
UDEV.create are globals declared in uartSample.c.

The uartSample.tcf file contains the remaining BIOS configuration. The most
important lines in this file which the application may need to pull into his tcf file are
as follows.

bios.ECM.ENABLE = 1;

bios.HWI.instance("HWI_INT8").interruptSelectNumber = 1;

These lines configure the ECM module and map Uart events to CPU interrupts. For
example the Uart event number is 38 which falls in ECM group 1. Here ECM group 1
is mapped to HWI_INT8.

The main() function configures the PINMUX and uses the Psc module to enable the
Uart peripheral.

The echo() task exercises the Uart driver. It uses GIO APIS to create uart channels
and reads and writes to them.

The user_uart0_init() calls Uart_init() and initializes the Uart_Params structure. It
also calls edma3init() which initializes the EDMA3 driver and sets up hEdma.

2.11.2.2 Build:

 This sample can be built using

<ID>/packages/ti/pspiom/examples/evmOMAPL137/uart/edma/build/ccs3/uartSamp
le.pjt

IMPORTANT NOTE: uartSample.pjt assumes that the Uart driver library is built with –
DUart_EDMA_ENABLE.

2.11.2.3 Setup:

You need to connect a NULL Modem cable from the evmOMAPL137 platform to a host
PC. On the host an application like HyperTerminal needs to be setup for appropriate
COM port, baud rate etc.

Page 28 of 145

OMAPL137 BIOS PSP User Guide

2.11.2.4 Output:

 When the sample runs, it will output the following string to the Uart output
channel.

“UART Demo Starts: INPUT a file of size 1000 bytes".

 The user needs to type or send 1000 bytes. The user could make use of the
sample.txt file provided with the package at
ti\pspiom\examples\evmOMAPL137\uart\<edma/interrupt>. This file contains
1000 characters of data

 This sample application will echo the received characters to the terminal.

Page 29 of 145

OMAPL137 BIOS PSP User Guide

3 I2C driver

3.1 Introduction
This document is the reference guide for the I2C device driver which explains the
features and tips to use them.

DSP/BIOS applications use the driver typically through APIs provided by the GIO
layer, in order to transmit and receive serial data. The following sections describe in
detail the necessary procedures to configure and use this driver, as well as other
additional information. It is recommended to go through the sample application to
get a feel of initializing and using the I2c driver.

3.1.1 Key Features

 Multi instantiable and re-entrant driver

 Each instance can operate as an receiver and/or transmitter

 Supports Polled, Interrupt and DMA Interrupt Mode of operation

3.2 Installation
The I2c device driver is a part of the PSP package for the OMAPL137 and is installed
as part of whole package installation. For high level design information, please refer
to the driver architecture guide that came with this package (available at
<ID>\ti\pspiom\i2c\docs)

3.2.1 I2C Component folder

On installation of PSP package for the OMAPL137, the I2C driver can be found at
<ID>\ ti\pspiom\i2c\

As show above, the i2c folder contains several sub-folders, the contents of which are
described below.

 i2c - The i2c folder is the place holder for the entire I2C driver, documents
and the build configuration files. This folder contains I2c.h, which is the
header file included by the application.

 build - contains CCS 3.3 / CCS 4 project files to build the I2c library.

 docs – Contains doxygen generated API reference.

 src – Contains the I2C driver’s source code.

3.2.2 Build Options

The I2c library can be built using the CCS v3.3 project file located at
<ID>\packages\ti\pspiom\i2c\build\OMAPL137\ccs3\i2c.pjt. This project file supports
the following build configurations.

IMPORTANT NOTE:

Page 30 of 145

OMAPL137 BIOS PSP User Guide

All build configurations require environment variable
%EDMA3LLD_BIOS5_INSTALLDIR% to be defined. This variable must point to
“<EDMA3_INSTALL_DIR>\packages”.

Debug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

 Defines “-DI2c_EDMA_ENABLE” to enable EDMA3 support in I2c driver. It also
contains “-i%EDMA3LLD_BIOS5_INSTALLDIR%” to find EDMA3 header files.

iDebug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

 Defines “-DI2c_EDMA_ENABLE” to enable EDMA3 support in I2c driver. It also
contains “-i%EDMA3LLD_BIOS5_INSTALLDIR%” to find EDMA3 header files.

 Defines “I2c_DEBUGPRINT_ENABLE to enable I2c driver to LOG debug
messages.

Release:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

 Defines “-DI2c_EDMA_ENABLE” to enable EDMA3 support in I2c driver. It also
contains “-i%EDMA3LLD_BIOS5_INSTALLDIR%” to find EDMA3 header files.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

iRelease:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

 Defines “-DI2c_EDMA_ENABLE” to enable EDMA3 support in I2c driver. It also
contains “-i%EDMA3LLD_BIOS5_INSTALLDIR%” to find EDMA3 header files.

 Defines “I2c_DEBUGPRINT_ENABLE to enable I2c driver to LOG debug
messages.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

3.2.2.1 Required and Optional Pre-defined symbols

The I2c library must be built with a soc specific pre-defined symbol.

“-DCHIP_OMAPL137” is used above to build for OMAPL137. Internally this define
is used to select a soc specific header file (soc_OMAPL137.h). This header file
contains information such as base addresses of I2C devices, their event numbers,
etc.

The I2c library can also be built with these optional pre-defined symbols.

Use –DI2c_EDMA_ENABLE when building library to enable DMA support in I2c
driver. If this symbol is not defined edma specific code will get eliminated and the
driver can be used only in POLLED or INTERRUPT mode.

Page 31 of 145

OMAPL137 BIOS PSP User Guide

Use -DPSP_DISABLE_INPUT_PARAMETER_CHECK when building library to turn
OFF parameter checking. This symbol is defined for Release and iRelease profiles
by default in the CCS 3.3 pjts provided.

Use -DNDEBUG when building library to turn off runtime asserts. This symbol is
defined for Release and iRelease profiles by default in the CCS 3.3 pjts provided.

3.3 Features
This section details the features of I2C and how to use them in detail.

3.3.1 Multi-Instance

The I2C driver can operate on all the instances of I2C on the EVMOMAPL137.
Different instances may be specified during driver creation time, and instances 0
through 2 with corresponding device IDs 0 through 2 are supported, respectively.

These instances can operate simultaneously with configurations supported by the I2C
driver. I2C instances are created as follows:

1. Static creation – static creation is done in the “tcf” file of the application;
this creation happens at build time. The UDEV module (UDEV.create) is
used during static configuration. An instance of the UDEV module at static
configuration time corresponds to creating and initializing an I2C instance

2. Dynamic creation – Dynamic creation of an I2C instance is done in the
application source files by calling DEV_createDevice(); this creation
happens at runtime.

UDEV.create and DEV_createDevice allow user to specify the following:

 iomFxns: Pointer to IOM function table. I2C requires this field to be
I2c_IOMFXNS.

 initFxn: I2C requires that the user call I2c_init() as part of this initFxn.
Users can also directly hook in I2c_init().

 device parameters: I2C requires the user to pass an I2c_Params struct.
This struct must exist in the application source files and it must be initialized
very early as part of driver specific initFxn.

 deviceId to identify the I2C peripheral.

For more information on configuring UDEV and I2c, please refer to the I2c sample
application (included with this driver release), and the DSP/BIOS API Reference
(spru403o.pdf, included in your DSP/BIOS installation).

3.3.2 Each Instance as Transmitter and/or receiver

I2C driver can be simultaneously operated as a transmitter and receiver. This could
be achieved by opening a GIO Channel as an INPUT channel and opening another
GIO Channel as an OUTPUT channel. The type of Channel is specified while creating
the channel (using GIO_create() and specifying “DriverTypes_OUTPUT” or
“DriverTypes_INPUT”). The configuration parameters are explained in the sections
to follow.

3.4 Configurations
Following tables document some of the configurable parameter of I2C. Please refer
to I2c.h for complete configurations and explanations.

Page 32 of 145

OMAPL137 BIOS PSP User Guide

3.4.1 I2c_Params

This structure defines the device configurations, expected to supply while
instantiating the driver known as devParams.

Members Description

enableCache Whether or not the submitted buffers are in cacheable
memory.

opMode Whether the I2C driver should operate in Polled or
Interrupt or DMA Interrupt Mode

ownAddr The slave address of the device application is
addressing

loopbackEnabled Enable or Disable digital loop back mode

numBits The number of data bits

busFreq The frequency at which the clock (SCL) is operating

addressing Whether 7 bit addressing or extended (10-bit)
addressing mode is used

edma3EventQueue The EDMA event queue the application will use in DMA
Interrupt mode of operation mode

hwiNumber The hardware interrupt number assigned for I2C
events

polledModeTimeout The data transfer timeout for polled mode of operation

pscPwrmEnable Boolean flag to enable (TRUE) or disable (FALSE) any
power management in the driver

pscPwrmEnable Boolean flag to enable (TRUE) or disable (FALSE) any
power management in the driver

Note: I2C address does not allow addressing “self”. That is any requests with slave
address as own address is not permitted, and such submit requests raise an error.

Apart from the instance parameters described above module wide constants declared
in I2c.h can be changed e.g I2c_peripheralClkFreq. These constants apply to all
I2c instances.

Build options can also be added or removed to add/remove features. e.g –
DI2c_EDMA_ENABLE.

3.4.2 I2c_ChanParams

Applications could use this structure to configure the channel specific configurations.
This is provided when driver channels are created (e.g. GIO_create)

Members Description

hEdma The handle to the EDMA driver. Required only when operating
in DMA interrupt mode. Also, note that when operating in DMA
interrupt mode, the necessary define switch –
DI2c_EDMA_ENABLE should be thrown, as described in section
3.2.2 “Build Options".

Page 33 of 145

OMAPL137 BIOS PSP User Guide

masterOrSlave Whether the instance/channel is in Master mode or Slave mode

hEdma is assigned the value of “hEdma” system wide variable. This is available only
when the EDMA driver is used and linked with the final executable. This holds a valid
value when a call to edm3init() is made. This is to be done by the application. This is
demonstrated in the sample application and guarded by the macro
I2C_EDMA_SUPPORT. This macro should be enabled in EDMA mode of operation

3.4.3 Polled Mode

The configurations required for polled mode of operation are:

Instance configuration opMode should be set to I2c_OpMode_POLLED. Additionally
the timeout parameter for the data transfer operation can be configured as required.
For example, polledModeTimeout could be set to 1000 Ticks, while the default value
is BIOS_WAIT_FOREVER.

3.4.4 Interrupt Mode

The configurations required for interrupt mode of operation are:

Instance configuration opMode should be set to I2c_OpMode_INTERRUPT.
Additionally the hwiNumber assigned by the application for the I2C CPU events group
should be passed, so that the driver can enable proper interrupts.

It is recommended to start from the sample application and modify it further to meet
the need of the actual application.

3.4.5 DMA Interrupt Mode

The configurations required for DMA Interrupt mode of operation are:

Instance configuration opMode should be set to I2c_OpMode_DMAINTERRUPT.
Additionally the hwiNumber assigned by the application for the I2C CPU events group
should be passed, so that the driver can enable proper interrupts. Also, as part of
chanParams, the handle to the EDMA driver, hEdma, should be passed by the
application.

Note that -DI2c_EDMA_ENABLE define should be supplied as a compiler switch for
proper operation in this mode so the sample application initializes the edma driver
and passes the appropriate chanParams.

3.4.6 Slave mode

This version of I2C driver supports slave mode and to use this driver in I2C slave
mode

a) masterOrSlave flag in chanparams to select slave mode.

b) use I2c_MASTER flag in the DataParam->flags during the IO submits

Please note the following

 Only one channel is allowed to be open in Slave mode.

 I2C driver does not support slave mode of operation in polled mode. Only
interrupt and DMA interrupt mode of operation are supported. The slave mode of
operation is tested successfully 100,200 and 400 kHz I2C clock frequency.

 (a) I2C slave application need to take care of the data (application level) protocol
on when and what to receive and send by/from slave side. (b)This driver provides
a generic bus communication path for slave. (c) Application protocol also needs
to consider the latency caused by software slave implementation. (d) The driver

Page 34 of 145

OMAPL137 BIOS PSP User Guide

does not support “0” no of byte transfer and the slave driver would not function
properly if master issues a STOP condition immediately after a START condition.

 In receive mode, the current IOP is completed when an SCD is detected.
However, when the receive buffer has exhausted, the receiver sends an NACK to
the master. This is done to prevent the call to driver from the application from
blocking indefinitely.

 In transmit mode, the current IOP is completed when the transmit buffer is
exhausted, or an SCD is detected (generated) on the bus. However, when the
transmit buffer has exhausted, though the IOP is completed, dummy bytes are
transferred. This is done to prevent the call to the driver from the application
from blocking indefinitely.

3.4.7 I2c_DataParam

The I2c_DataParam structure is one the most important structures that needs to be
passed as a buffer in the GIO_read/write calls.

For I2C communication, the device needs not just the actual data for transfer but
additional details also like the address of the device that it should communicate to,
communication control bit flags (START/STOP etc) and any other parameters as
demanded by the case. All these are collected under one structure called the
DataParam structure.

Members Description

slaveAddr The address of the slave device that this data transfer
operation is intended for

buffer The actual data that should be sent out on the SDA line

bufLen The length of the data that should be sent out in the SDA
line

flags The flags for current data transfer (explained below)

param Reserved for future use

The flags member of the DataParam structure defines the control signal that is
needed to be generated for the current operation. For example, if slave device
demands that current transfer should not generate a stop bit, then this can be
controlled by not specifying the I2C_STOP flag in the flags member. However, please
note that the flags should contain a meaningful combination for the current transfer
and should be supported on the instance and the slave device for that transfer

3.5 Control Commands
Following table describes some of important the control commands, for a
comprehensive list please refer the ICOTL defined in I2c.h.

Command Arguments Description

I2c_IOCTL_SET_BIT_RATE UInt32 * Configures the bus frequency
for the I2C instance

I2c_IOCTL_GET_BIT_RATE UInt32 * Passes the current bus
frequency for the I2C instance

I2c_IOCTL_CANCEL_PENDI
NG_IO

None Cancels all the pending I/O
requests

Page 35 of 145

OMAPL137 BIOS PSP User Guide

I2c_IOCTL_BIT_COUNT UInt32 * Configures the data bit length
for transmission and reception

I2c_IOCTL_NACK None Configures the I2C instance to
generate NACK when required

I2c_IOCTL_SET_OWN_ADDR UInt32 * Configures the own address for
current instance

I2c_IOCTL_GET_OWN_ADDR UInt32 * Passes the current own address
set for the current instance

I2c_IOCTL_SET_POLLEDMO
DETIMEOUT

UInt32 * Change the value for polled
mode timeout

3.6 Use of I2C driver through Stream APIs
Following sections explain the use of parameters of GIO calls in the context of PSP
driver. Note that no effort is made to document the use of GIO calls; any PSP specific
requirements are covered below.

3.6.1 GIO_create

Parameter
Number

Parameter Specifics to PSP

1 Device Name string

Unique identifier used to identify this
driver. Please note the name should be
same as specified while creating the driver.
(Either through TCF or DEV_createDevice
()

2 Channel Mode
Should be “IOM_INPUT” when I2C requires
to received data and “IOM_OUTPUT” when
I2C requires to transmit

3 GIO_Attrs * Parameters required for the creation of the
GIO instance (e.g. channel parameters)

3.6.2 GIO_control

Parameter
Number

Parameter Specifics to PSP

1 GIO_handle Handle returned by GIO_create

2 Command IOCTL command defined by I2C driver

3 Arguments Misc arguments if required by the command

3.6.3 GIO_write/read

Parameter
Number

Parameter Specifics to PSP

1 Channel Handle Handle returned by GIO_create

Page 36 of 145

OMAPL137 BIOS PSP User Guide

2 Pointer to buffer
Should be pointer to variable of type
I2c_PktAddrPayload OR Uint32 * that
holds the audio data.

3 Size Size of the transaction

3.7 Sources that need re-targeting

3.7.1 ti/pspiom/cslr/soc_OMAPL137.h (soc specific header file):

This file contains target (SoC) specific definitions. In most cases, changing the values
for the of SoC specific details done here should suffice. However, if there are major
changes in the hardware instance then the driver file may be needed to change.

3.8 EDMA3 Dependency
I2C driver relies on EDMA3 LLD driver to move data from/to application buffers to
peripheral; typically EDMA3 driver is PSP deliverable unless mentioned otherwise.
Please refer to the release notes that came with this release. Please ensure that
current PSP release is compliant with version of EDMA3 driver being used.

3.8.1 Used Paramset of EDMA 3

PSP driver uses TWO paramsets of EDMA3 per instance, one for Tx and another for
Rx; if there are no paramsets available the PSP driver creation would fail. These
paramsets are used through the lifetime of PSP driver. No link paramsets are used.

3.9 Known Issues
Please refer to the top level release notes that came with this release.

3.10 Limitations
Please refer to the top level release notes that came with this release.

3.11 I2c Sample applications

3.11.1 Interrupt mode sample

3.11.1.1 Description:

This sample demonstrates the use of the I2c driver in interrupt mode.

This example uses the I2c bus to write an array of data to the CAT24WC256 EEPROM
memory of the evmOMAPL137. Once the data has been written, the I2c bus again is
used to read the same data from the EEPROM memory. The data read is then
compared with the data that was written, and if it matches then the operation is
considered a success.

The reads and writes to the EEPROM memory are accomplished by use of both the
I2c and the GIO modules, in combination. The I2c driver is used to configure and

Page 37 of 145

OMAPL137 BIOS PSP User Guide

set up the I2c bus, and the GPIO module APIs are used to perform the actual reads
and writes to the EEPROM memory, via the I2c bus.

The I2c driver is configured both statically in the i2cSample.tci and i2cSample.tcf
files, as well as at run time in the i2cSample_main.c and i2cSample_io.c files.

The i2cSample.tcf file contains important BIOS configuration settings, which are
required in order for the I2c operations to work properly. The most important lines
in this file are:

bios.ECM.ENABLE = 1;

bios.HWI.instance("HWI_INT8").interruptSelectNumber = 1;

The above configuration settings are needed to correctly set up the ECM module and
map the I2c event to CPU interrupt. For example the I2c event number is 36, which
falls under ECM group 1. Here ECM group 1 is mapped to HWI_INT8, and this is the
HWI number used when configuring i2cParams at runtime (explained further below).

Further I2c static configuration is done in the i2cSample.tci file, which uses the UDEV
module to configure the user defined init function “user_i2c_init”, and also hook in
the I2c instance parameters (i2cParams).

At run time, this results in the I2c user defined init function to be called before the
main() function. This function in turn calls the actual I2c_init() function (a
requirement if a user defined init function is used), and then sets up the user’s I2c
instance parameters via “i2cParams”.

Once initialization has completed, the main() function runs, configuring the PINMUX.
Following this, the user defined task “echoTask()” runs, which creates GIO I2c read
and write handles. These handles are then used when calling the GIO_submit() API
to actually write and read data to and from the EEPROM memory.

3.11.1.2 Build:

 This sample can be built using

<ID>/packages/ti/pspiom/examples/evmOMAPL137/i2c/interrupt/build/ccs3/i2cSam
ple.pjt

IMPORTANT NOTE: i2cSample.pjt contains references to
%EDMA3LLD_BIOS5_INSTALLDIR% environment variable and links with edma3
libraries. This is required because by default the I2c driver library is built with –
DI2c_EDMA_ENABLE. The user can remove all references of EDMA3 from
i2cSample.pjt if he re-builds the I2c library without –DI2c_EDMA_ENABLE.

3.11.1.3 Setup:

No special setup is needed to run the I2c example

Page 38 of 145

OMAPL137 BIOS PSP User Guide

Warning: Please note that the sample application erases the EEPROM during
the execution, before it starts with the read/write test.

3.11.1.4 Output:

When the sample runs, it will output the following:
I2C :Start of I2C sample application

GIO_create(outHandle) returned status = 0

GIO_create(inHandle) returned status = 0

I2C CAT24WC256 EEPROM write/read test started

I2C CAT24WC256 EEPROM Read/write test passed

I2C :End of I2C sample application

!!! PSP HrtBt

!!! PSP HrtBt

..............

3.11.2 DMA Interrupt mode sample

3.11.2.1 Description:

This sample demonstrates the use of the I2c driver in EDMA mode. In EDMA mode,
the I2c driver uses DMA for data transfers, instead of the CPU.

This example uses the I2c bus to write an array of data to the CAT24WC256 EEPROM
memory of the evmOMAPL137. Once the data has been written, the I2c bus again is
used to read the same data from the EEPROM memory. The data read is then
compared with the data that was written, and if it matches then the operation is
considered a success.

The reads and writes to the EEPROM memory are accomplished by use of both the
I2c and the GIO modules, in combination. The I2c driver is used to configure and
set up the I2c bus, and the GIO module APIs are used to perform the actual reads
and writes to the EEPROM memory, via the I2c bus.

The I2c driver is configured both statically in the i2cSample.tci and i2cSample.tcf
files, as well as at run time in the i2cSample_main.c and i2cSample_io.c files.

The i2cSample.tcf file contains important BIOS configuration settings, which are
required in order for the I2c operations to work properly. The most important lines
in this file which the user would need in their application are:

bios.ECM.ENABLE = 1;

bios.HWI.instance("HWI_INT7").interruptSelectNumber = 0;

bios.HWI.instance("HWI_INT8").interruptSelectNumber = 1;

bios.HWI.instance("HWI_INT9").interruptSelectNumber = 2;

bios.HWI.instance("HWI_INT10").interruptSelectNumber = 3;

Page 39 of 145

OMAPL137 BIOS PSP User Guide

The above configuration settings are needed to correctly set up the ECM module and
map the EDMA events to CPU interrupts. Since the CPU is not used in I2c transfers
in EDMA mode, these ECM groups must be mapped to the EDMA events as shown.

Further I2c static configuration is done in the i2cSample.tci file, which uses the UDEV
module to configure the user defined init function “user_i2c_init”, and also hook in
the I2c instance parameters (i2cParams).

At run time, this results in the I2c user defined init function to be called before the
main() function. This function in turn calls the actual I2c_init() function (a
requirement if a user defined init function is used), and then sets up the user’s I2c
instance parameters via “i2cParams”.

Once initialization has completed, the main() function runs, configuring the PINMUX.
Following this, the user defined task “echoTask()” runs, which creates GIO I2c read
and write handles. These handles are then used when calling the GIO_submit() API
to actually write and read data to and from the EEPROM memory.

3.11.2.2 Build:

 This sample can be built using

<ID>/packages/ti/pspiom/examples/evmOMAPL137/i2c/edma/build/ccs3/i2cSample.
pjt

IMPORTANT NOTE: i2cSample.pjt assumes that the I2c driver library is built with –
DI2c_EDMA_ENABLE.

3.11.2.3 Setup:

No special setup is needed to run the I2c example

3.11.2.4 Output:

When the sample runs, it will output the following:
EDMA3 : edma3init() passed

I2C :Start of I2C sample application

GIO_create(outHandle) returned status = 0

GIO_create(inHandle) returned status = 0

I2C CAT24WC256 EEPROM write/read test started

I2C CAT24WC256 EEPROM Read/write test passed

I2C :End of I2C sample application

!!! PSP HrtBt

!!! PSP HrtBt

..............

Page 40 of 145

OMAPL137 BIOS PSP User Guide

4 GPIO driver

4.1 Introduction
This section is the reference guide for the GPIO device driver which explains the
features and tips on how to use it.

DSP/BIOS applications use the driver typically through APIs provided by the GPIO
driver itself, in order to communicate with the GPIO hardware (the GPIO driver does
not follow the DSP/BIOS IOM model). The GPIO driver provides a set of basic APIs
which may be used to read or write to the GPIO pins or banks, configure/register
interrupts and corresponding interrupt service routines, configure rising or falling
edge triggers and more.

 This driver does not support any data transfer protocol; the user is expected to
write that protocol as a wrapper around the GPIO APIs provided, if needed.

The following sections describe in detail the necessary procedures to configure and
use this driver, as well as other additional information. It is recommended to go
through the sample application to get a feel of initializing and using the GPIO driver.

4.1.1 Key Features

 Setting GPIO pin directions

 Marking pins or banks as available for use

 Enabling and Disabling of bank interrupts

 Registering interrupt handlers for a pin or bank interrupt

 Getting or setting a group of pins to a value

4.2 Installation
The Gpio device driver is a part of the PSP package for the OMAPL137 and is installed
as part of whole package installation. For high level design information, please refer
to the driver architecture guide that came with this package (available at
<ID>\ti\pspiom\gpio\docs)

4.2.1 Gpio Component folder

Upon installation of the PSP package for the OMAPL137, the Gpio driver can be found
at <ID>\ ti\pspiom\gpio\

As show above, the gpio folder contains several sub-folders, the contents of which
are described below.

 gpio - The gpio folder is the place holder for the entire Gpio driver source and
the build configuration files. This folder contains Gpio.h, which is the header
file included by the application.

 build - contains CCS 3.3 / CCS 4 project files to build the Gpio library.

 src – Contains the Gpio driver’s source code.

Page 41 of 145

OMAPL137 BIOS PSP User Guide

4.2.2 Build Options

The Gpio library can be built using the CCS v3.3 project file located at
<ID>\packages\ti\pspiom\gpio\build\OMAPL137\ccs3\gpio.pjt. This project file
supports the following build configurations.

Debug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

iDebug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

 Defines “Gpio_DEBUGPRINT_ENABLE to enable Gpio driver to LOG debug
messages.

Release:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

iRelease:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

 Defines “Gpio_DEBUGPRINT_ENABLE to enable Gpio driver to LOG debug
messages.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

4.2.2.1 Required and Optional Pre-defined symbols
The Gpio library must be built with a soc specific pre-defined symbol.

“-DCHIP_OMAPL137” is used above to build for OMAPL137. Internally this define
is used to select a soc specific header file (soc_OMAPL137.h). This header file
contains information such as base addresses of Gpio devices, their event
numbers, etc.

If this define is missing, the following compile error will be thrown:

"No chip type defined! (Must use -DCHIP_OMAPL137 or -DCHIP_OMAPL137)"

The Gpio library can also be built with these optional pre-defined symbols.

Use -DPSP_DISABLE_INPUT_PARAMETER_CHECK when building library to turn
OFF parameter checking. This symbol is defined for Release and iRelease profiles
by default in the CCS 3.3 pjts provided.

Use -DNDEBUG when building library to turn off runtime asserts. This symbol is
defined for Release and iRelease profiles by default in the CCS 3.3 or CCS v4 pjts
provided.

Page 42 of 145

OMAPL137 BIOS PSP User Guide

4.3 Features
This section details the features of Gpio and how to use it in detail.

4.3.1 Single-Instance Usage

The Gpio driver can operate on all the Gpio banks and pins on the EVMOMAPL137.
Only one Gpio driver instance is currently supported by the Gpio driver module.
Through this instance, the user may specify bank and pin parameter settings as
desired. This single Gpio instance uses device ID 0.

Once configured and set up properly, the user may perform operations on the Gpio
banks and pins using the Gpio APIs provided by the Gpio module.

The Gpio driver is not an IOM driver, and therefore it is not necessary to make any
static configuration settings for UDEV, as is needed in the other drivers (e.g. Uart).
However, it is necessary to configure the HWI interrupt select numbers properly in
the BIOS configuration.

The following steps provide an overview of how to use the Gpio driver; it is
recommended that the user follow the Gpio example in tandem with these steps.
The first step must be done in the BIOS configuration file; all steps that follow must
be done in C code:

1. In the *.tcf file, set up HWI interrupt source numbers:

bios.HWI.instance("HWI_INT7").interruptSelectNumber = 0;

bios.HWI.instance("HWI_INT8").interruptSelectNumber = 1;

bios.HWI.instance("HWI_INT9").interruptSelectNumber = 2;

bios.HWI.instance("HWI_INT10").interruptSelectNumber = 3;

2. In the C file, declare a Gpio_Handle variable:

Gpio_Handle gpioHandle;

gpioHandle will be used later in the program to reference the Gpio instance
that exists as part of the driver.

3. Create a struct of type Gpio_Params:

Gpio_Params params = Gpio_PARAMS;

setting its value to Gpio_PARAMS initializes it to the default parameter values.

4. Use the params struct created in the previous step to configure pins and
banks as needed. For example:

/* set instance number to be 0 */

params.instNum = 0;

Page 43 of 145

OMAPL137 BIOS PSP User Guide

/* specify the bank we want to use as unavailable */

params.BankParams[2].inUse = Gpio_InUse_No;

/* specify the HWI associated with this bank */

params.BankParams[2].hwiNum = 9;

/* specify the pin we want to use within this bank as
unavailable */

params.BankParams[2].PinConfInfo[5].inUse = Gpio_InUse_No;

5. Call Gpio_open() to get a handle to the Gpio instance:

gpioHandle = Gpio_open(¶ms);

6. Wake up the Gpio module (refer to section 7.4 “Use of PSC driver through
module APIs” for more information):

status = Psc_ModuleClkCtrl(Psc_DevId_1, GPIO_LPSC_NUM, TRUE);

7. Make calls to Gpio APIs as desired, using gpioHandle. For example:

status = Gpio_setRisingEdgeTrigger(gpioHandle, 5);

/*

 * make other Gpio API calls here, such as registering an

 * interrupt handler for a particular bank, etc.

 */

8. Close the instance handle (optional)

Gpio_close(gpioHandle);

For more information on configuring and using Gpio, please refer to the Gpio sample
application, and the doxygen documentation for Gpio (included with this driver
release).

4.4 Configurations
Following tables document some of the configurable parameters of Gpio. Please refer
to the doxygen documentation or Gpio.h for complete configurations and
explanations.

4.4.1 Gpio_Params

This structure is used to define the user’s desired configuration settings for the Gpio
instance. It contains the instance number and the array of bank configuration
settings for the Gpio instance. The user is expected to supply an instance of this
struct when calling Gpio_open().

Page 44 of 145

OMAPL137 BIOS PSP User Guide

Members Description

instNum The Gpio instance to configure. Currently must be 0.

BankParams[] An array which represents the configuration settings
for the array of Gpio banks existing on the device.

4.4.2 Gpio_BankConfig

Structure representing the configuration settings for a particular bank in the Gpio
instance. The Gpio_Params structure contains an array of type Gpio_BankConfig,
through which the user can update to configure bank settings.

Members Description

PinConfInfo[] Array which represents the configuration settings for
the set of pins for this bank.

hwiNum The hardware interrupt number that is assigned to the
event associated with this bank.

inUse Used to specify the availability of this bank. Default is
Gpio_InUse_Yes (available).

4.4.3 Gpio_PinConfig

Structure representing the settings for an individual pin. The Gpio_Params structure
contains an array of type Gpio_BankConfig, and each of those elements in turn
contains an array of type Gpio_PinConfig. Through this indirection, the user can
configure pin settings for a particular bank. (please refer to the example code or
section 5.3.1 step 4 in this document to see how this works).

Members Description

inUse Used to specify the availability of this pin. Default is
Gpio_InUse_Yes (available).

hwiNum The hardware interrupt number that is assigned to the
event associated with this pin.

4.4.4 Gpio_InUse (enumeration type)

This enumeration is used frequently within the Gpio_Params and related
configuration structs. Its enumeration values are used when specifying whether or
not a bank or pin is available for use.

Gpio_InUse_Yes – specifies that the bank or pin is available to be used.

Gpio_InUse_No – specifies that the bank or pin is not available for use.

Page 45 of 145

OMAPL137 BIOS PSP User Guide

4.5 Gpio Bank Event Numbers
The following event numbers are configured for the 8 Gpio banks on the
EVMOMAPL137. This table should be used when configuring the HWI interrupt select
numbers and HWI number for a given bank that the user wishes to use. Please refer
to the ECM module in the DSP/BIOS 5.xx Application Programming Interface (API)
Reference Guide:

Bank Number Event Number

0 65

1 41

2 49

3 52

4 54

5 59

6 62

7 72

4.6 Sources that need re-targeting

4.6.1 ti/pspiom/cslr/soc_OMAPL137.h (soc specific header file):

This file contains target (SoC) specific definitions. In most cases, changing the values
for the of SoC specific details done here should suffice. However, if there are major
changes in the hardware instance then the driver file may be needed to change.

4.7 Known Issues
Please refer to the top level release notes that came with this release.

4.8 Limitations
Please refer to the top level release notes that came with this release.

4.9 Gpio Sample application

4.9.1 Description:

This sample demonstrates the use of the Gpio driver.

The sample does this by executing in a while loop, awaiting input on GPIO pin
GPIO0_8 (Gpio bank 0, pin 8, configured as an input pin), which is hooked up to
switch SW3-1. This GPIO pin is configured to trigger an interrupt at the rising edge.
When the switch SW3-1 is toggled, the ISR handler for this interrupt,
GPIO_input_isr() is called. This ISR sets the global variable status to 1, which is
the condition variable for the while loop described previously. The while loop then
breaks and and causes led DS1 to blink. This led is configured to be connected to
the GPIO0_12 (Gpio bank 0, pin 12, configured as output pin).

The gpioSample.tcf file contains important BIOS configuration settings, which are
required in order for the Gpio operations to work properly. The most important lines
in this file are:

Page 46 of 145

OMAPL137 BIOS PSP User Guide

bios.ECM.ENABLE = 1;

bios.HWI.instance("HWI_INT9").interruptSelectNumber = 2;

The above configuration settings are needed to correctly set up the ECM module and
map the Gpio bank 0 event number to the correct CPU interrupt number. For
example, the Gpio event number for bank 0 is 65, which falls under ECM group 2.
Here ECM group 2 is mapped to HWI_INT9, and this is the HWI number used when
configuring gpioParams at runtime.

At run time, this results in the Gpio user defined ISR function GPIO_input_isr() to
be called once the switch SW3-1 is toggled.

When the user configures their own application, they should hook up an HWI, ISR,
and ECM in a similar manner.

4.9.1.1 Build:

 This sample can be built using

<ID>/packages/ti/pspiom/examples/evmOMAPL137/gpio/build/ccs3/gpioSample.pjt

4.9.1.2 Setup:

No special setup is needed to run the Gpio example

4.9.1.3 Output:

When the sample runs, it will output similar to the following. Note that the user
must toggle switch SW3-1 in order to see the final two lines of the program output:

0 Waiting for GPIO Interrupt

1 Waiting for user to toggle SW3-1

2 Waiting for user to toggle SW3-1

3 Waiting for user to toggle SW3-1

4 Waiting for user to toggle SW3-1

5 Waiting for user to toggle SW3-1

6 Waiting for user to toggle SW3-1

7 Waiting for user to toggle SW3-1

8 Waiting for user to toggle SW3-1

9 Waiting for user to toggle SW3-1

 GPIO Interrupt occured !
11 End of GPIO sample application!

Page 47 of 145

OMAPL137 BIOS PSP User Guide

5 LCDC Raster Controller Driver

5.1 Introduction
This document is the reference guide for the LCDC Raster controller device driver
which explains the features and tips to use them.

DSP/BIOS applications use the driver typically through APIs provided by the SIO
layer, to transmit and receive serial data. The following sections describe in detail
the necessary procedures to configure and use this driver, as well as other additional
information. It is recommended to go through the sample application to get a feel of
initializing and using the LCDC Raster driver.

5.1.1 Key Features

 Multi-instance able, asynchronous and re-entrant driver.

 Each instance operates as a raster controller instance of the LCDC.

 Supports multiple frame sizes – only limited by the hardware.

5.1.2 References

1 SPRUFM0 TMS320OMAPL137 DSP LCD Controller User's Guide

5.2 Installation
The LCDC Raster device driver is a part of PSP package for OMAPL137 platform and
is installed as part of whole package installation.

5.2.1 LCDC Raster Component folder

On installation of PSP package for the OMAPL137, the LCDC Raster Controller driver
can be found at <ID>\ ti\pspiom\lcdcraster\

As show above the LCDC Raster contains sub-folders, the contents of which are
described below.

 lcdcraster - The lcdcraster folder is the place holder for the entire lcdcraster
driver source and the build configuration files. LCDC Raster driver is
implemented as an IOM driver under DSP/BIOS™ operating system. SIO
defined APIs can be used to interface to LCDC Raster driver. This folder
contains the build configuration file (package.bld), the LCDC Raster header
file that’s included by the application (Raster.h).

 build - contains CCS 3.3 / CCS 4 project files to build the LCDC Raster
library.

 lib – contains the LCDC Raster libraries.

 src – Place holder for LCDC Raster driver’s source code.

Page 48 of 145

OMAPL137 BIOS PSP User Guide

5.2.2 Build Options

The LCDC Raster library can be built using the CCS v3.3 project file located at
<ID>\packages\ti\pspiom\lcdcraster\build\OMAPL137\ccs3\lcdcraster.pjt. This
project file supports the following build configurations.

Debug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

iDebug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

 Defines “Raster_DEBUGPRINT_ENABLE to enable Raster driver to LOG debug
messages.

Release:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

iRelease:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

 Defines “Raster_DEBUGPRINT_ENABLE to enable Raster driver to LOG debug
messages.

5.2.2.1 Required and Optional Pre-defined symbols

The LCDC Raster library must be built with a soc specific pre-defined symbol.

“-DCHIP_OMAPL137” is used above to build for OMAPL137. Internally this define
is used to select a soc specific header file (soc_OMAPL137.h). This header file
contains information such as base addresses of LCDC devices, their interrupt
numbers, etc.

If this define is missing, the following compile error will be thrown:

"No chip type defined! (Must use -DCHIP_OMAPL137 or -DCHIP_OMAPL137)"

The LCDC Raster library can also be built with these optional pre-defined
symbols.

Use -DPSP_DISABLE_INPUT_PARAMETER_CHECK when building library to turn
OFF parameter checking. This symbol is defined for Release and iRelease profiles
by default in the CCS 3.3 pjts provided.

Page 49 of 145

OMAPL137 BIOS PSP User Guide

Use -DNDEBUG when building library to turn off runtime asserts. This symbol is
defined for Release and iRelease profiles by default in the CCS 3.3 pjts provided.

5.3 Features
This section details the features of LCDC Raster and how to use them in detail.

5.3.1 Multi-Instance Usage

The Raster driver can be used to operate the LCDC Controller in Raster mode on the
OMAPL137. Currently, only one driver instance for LCDC Raster is supported during
driver creation time for the OMAPL137. This is because there is only one LCDC
Raster controller on the hardware. However, the driver is written in such a way as to
support multiple instances for when new SOCs are added which do have multiple
controllers. A LCDC Raster driver instance for the OMAPL137 should use a single
instance with device ID 0.

A LCDC Raster instance can be operated with configurations supported by Raster
driver. The device ID can be specified using the deviceId field of a UDEV instance
(however, only deviceId = 0 is supported for the OMAPL137).

There are two ways in which a new instance of the Raster driver can be created.

1. Static creation – static creation is done in the “tcf” file of the application; this
creation happens at build time. It’s necessary to configure LCDC Raster using
two modules:

a. The UDEV module (UDEV.create) is used during static configuration. An
instance of the UDEV module at static configuration time corresponds to
creating and initializing an LCDC Raster instance.

b. It is also necessary to create an instance of the class driver DIO. This DIO
instance is needed in order to write to the LCDC Raster controller using the
SIO module at run time. It’s necessary to hook the UDEV instance that was
created into this DIO instance via the DIO instance property deviceName.
Additionally, a Raster_ChanParams struct (which must be defined in the
application’s C code) must be set using the DIO instance property
chanParams.

2. Dynamic creation – Dynamic creation of an LCDC Raster instance is done in the
application source files by calling DEV_createDevice(); this creation happens at
runtime. However, it is still necessary to configure the DIO instance statically, as
described in part 1.b above.

UDEV.create and DEV_createDevice allow user to specify the following:

 iomFxns: Pointer to IOM function table. Raster requires this field to be
Raster_IOMFXNS.

 initFxn: LCDC Raster requires that the user call Raster_init() as part of this
initFxn. Users can also directly hook in Raster_init().

 device parameters: LCDC Raster requires the user to pass an
Raster_Params struct. This struct must exist in the application source files
and it must be initialized very early as part of driver specific initFxn.

 deviceId to identify the LCDC Raster peripheral.

For more information on configuring UDEV, DIO and LCDC Raster, please refer to the
LCDC Raster sample application (included with this driver release), and the
DSP/BIOS API Reference (spru403o.pdf, included in your DSP/BIOS installation).

Page 50 of 145

OMAPL137 BIOS PSP User Guide

5.3.2 I/O using raster driver

The Raster driver can operate only in output mode. This is because, the LCDC Raster
controller can only output image data onto the Raster LCD displays, using the
concept of frame buffers. There is nothing to be read. Hence, the driver only
supports a “write” channel creation.

5.4 Configurations
Following tables document some of the configurable parameter of LCDC Raster
device. Please refer to Raster.h for complete configurations and explanations.

5.4.1 Device Parameters

This structure defines the device instance configuration, which should be supplied
while instantiating the driver.

Raster_Params

Serial
Number

Parameter Description

1 devConf
The device configuration

provided as a
Raster_DeviceConf structure

5.4.1.1 Raster_DeviceConf

This structure defines the LCDC device setting configuration.

Serial
Number

Parameter Description

1 clkFreqHz The output pixel clock
frequency desired to be set

2 opMode Mode of operation

3 hwiNum
The HWI event number

assigned to the group the
LCDC CPU event belongs to

4 dma

Configuration for the DMA
controller internal to LCDC.

This is provided as a
Raster_DmaConfig structure

5

pscPwrmEnable Boolean flag to enable
(TRUE) or disable (FALSE)
any power management in
the driver

Note: The only mode of operation supported by the LCDC Raster driver is
DMAINTERRUPT mode. This utilizes the independent DMA controller that the LCDC
controller is provided with. This DMA is different from the EDMA peripheral of the
OMAPL137. This DMA takes care of transferring the data in terms of frame buffer
from external RAM to the display. This DMA can be configured as noted above in via
Raster_DeviceConf structure and as described below via Raster_DmaConfig
structure. For further details refer to TMS320OMAPL137 DSP LCD Controller User’s
Guide .

Page 51 of 145

OMAPL137 BIOS PSP User Guide

5.4.1.2 Internal DMA Configuration

This structure defines the parameters to configure the DMA operation, internal to the
LCDC controller.

Raster_DmaConfig

Serial
Number

Parameter Description

1 fbMode

The device should operate
in single frame buffer mode

or double frame buffer
mode (ping-pong mode)

2 burstSize
The chunks of 4-bytes in
which the DMA should

transfer the data

3 bigEndian The operation is big endian
mode or little endian mode

4 eofInt To enable End Of Frame
interrupts

Note: The driver currently only supports little endian mode of operation. Hence big-
Endian should be set to false.

5.4.2 Channel Parameters

The channel parameters configure the raster controller operation and are described
below.

Raster_ChanParams

Serial
Number

Parameter Description

1 Controller

The controller type to be
configured. This should be

configured as a
Raster_Controller

2 chanConf
The Raster controller

configuration, given as
Raster_RasterConf

3 segId

The MEM segment ID to be
used if the driver is to

allocate the frame buffer
memory on application’s

behalf

Note:

The allocation of memory for the frame buffer is purely on application’s behalf. This
happens, when the application asks the driver to allocate memory for the frame
buffers it requires, via IOCTL calls. In such cases, dynamic allocation happens from
the heap. The heap from which the allocation is made should be defined by the
application. In result, the application should create a heap using the DSP/BIOS MEM
manager, and pass the segment ID for this heap via segId. In case the segId is

Page 52 of 145

OMAPL137 BIOS PSP User Guide

NULL and the application requests for allocation, then the driver tries to allocate the
frame buffer from the default heap of the system. However, the application may
choose not to allocate the frame buffers via driver and instead just pass the buffers it
has populated to the driver. The driver shall simple processes these buffers and in
this case no dynamic allocation happens in the driver.

5.4.2.1 Raster controller configuration

Raster_RasterConf

Serial
Number

Parameter Description

1 outputFormat Right aligned or left aligned,
TFT or STN data format

2 intface The physical data interface
with the display

3 panel
Whether STN or TFT type of
panel. For raster It should

be TFT

4 display If monochrome or colour
display is interfaced

5 bitsPP The number of bits per pixel

6 fbContent If the frame buffer contains
frame data, pallete, or both

7 dataOrder
The order of data is

arranged is ‘LSB to MSB’ or
‘MSB to LSB’

8 nibbleMode

If the nibble mode should
be enabled. This is true for
bits per pixel less than 8

bits

9 subPanel The configuration required
for sub-panel, when enabled

10 timing2
The configuration required
for SYNC signals and their

polarity control

11 fifoDmaDelay

The delay after which the
raster should generate DMA
request to the internal DMA

controller

12 intMask Interrupts which need to be
enabled

13 hFP
Horizontal front porch

length in terms of number
of pixel clock cycles

14 hBP Horizontal back porch
length in terms of number

Page 53 of 145

OMAPL137 BIOS PSP User Guide

of pixel clock cycles

15 hSPW
Horizontal sync pulse width
in terms of number of pixel

clock cycles

16 pPL Number of pixels per line

18 vFP
vertical front porch length in

terms of number of line
clock cycles

19 vBP
vertical back porch length in

terms of number of line
clock cycles

20 vSPW
vertical sync pulse width in

terms of number of line
clock cycles

21 lPP Number of lines per panel

5.5 Control Commands
The following are some of the important control commands for the raster controller
driver:

Command Arguments Description

Raster_IOCTL_GET_DEVICE_CONF Pointer to
Raster_DeviceConf
structure

To get the current
device configuration

Raster_IOCTL_GET_RASTER_CONF Pointer to
Raster_RasterConf
structure

To get the current raster
configuration

Raster_IOCTL_GET_RASTER_SUBPANEL_CONF Pointer to
Raster_RasterSubpanel
structure

To get the current raster
sub panel configuration

Raster_IOCTL_SET_RASTER_SUBPANEL_EN Pointer to Void If boolean is true then
enables subpanel, else
disables subpanel

Raster_IOCTL_SET_RASTER_SUBPANEL_POS Pointer to Void To configure the
position of the raster
subpanel

Raster_IOCTL_SET_RASTER_SUBPANEL_LPPT Pointer to Void To configure the number
of lines to be refreshed
in the subPanel

Raster_IOCTL_SET_RASTER_SUBPANEL_DATA Pointer to Void To configure the default
pixel data outside the
subPanel

Raster_IOCTL_GET_DMA_CONF Pointer to
Raster_DmaConfig

To get the current DMA
configuration setting

Page 54 of 145

OMAPL137 BIOS PSP User Guide

structure

Raster_IOCTL_SET_DMA_FB_MODE Pointer to Void To set the frame buffer
mode for the

Raster_IOCTL_SET_DMA_BURST_SIZE Pointer to Void To set the DMA burst
size

Raster_IOCTL_SET_DMA_EOF_INT Pointer to Void To enable/disable the
end-of-frame interrupt

Raster_IOCTL_ADD_RASTER_EVENT Pointer to Uint32
variable containing the
interrupt mask

To enable a specific
event interrupt enable

Raster_IOCTL_REM_RASTER_EVENT Pointer to Uint32
variable containing
interrupt mask

To disable a specific
event interrupt disable

Raster_IOCTL_GET_EVENT_STAT Pointer to
Raster_EvenStat
structure

To get the current event
statistics

Raster_IOCTL_CLEAR_EVENT_STAT None Clears the current event
statistics

Raster_IOCTL_RASTER_ENABLE None To enable the raster
controller

Raster_IOCTL_RASTER_DISABLE None To disable the raster
controller

Raster_IOCTL_GET_DEVICE_VERSION Pointer to Uint32
variable

To get the current
version of the controller

Raster_IOCTL_ALLOC_FB Pointer to a
Raster_FrameBuffer

To allocate a frame
buffer on application’s
behalf

Raster_IOCTL_FREE_FB Pointer to a
Raster_FrameBuffer

To de-allocate a frame
buffer in application’s
behalf

5.6 Use of RASTER driver through SIO APIs

5.6.1 SIO_create

Parameter
Number

Parameter Specifics to Raster

1 Device Name string Unique identifier used to identify this driver.
Please note the name should be same as
specified while creating the DIO instance in
the “tcf” file.

Page 55 of 145

OMAPL137 BIOS PSP User Guide

2 IO mode Should be “SIO_OUTPUT”

3 size_t buffersize Size of stream buffer.

4 SIO_Attrs *attrs Pointer to the parameters structure. Should
set:

 attrs.model = SIO_ISSUERECLAIM;

5.6.2 SIO_ctrl

Parameter
Number

Parameter Specifics to Raster

1 SIO_Handle stream Handle returned by SIO_create

2 Uns cmd IOCTL command defined by LCDC
Raster driver

3 Arg arg Misc arguments if required by the
command

5.6.3 SIO_issue

Parameter
Number

Parameter Specifics to Raster

1 SIO_Handle stream Handle returned by SIO_create

3 Pointer to buffer Should be pointer to framebuffer
of type

4 Size Size of the transaction in MADUs

5 Arg arg User argument

5.6.4 SIO_reclaim

Parameter
Number

Parameter Specifics to Raster

1 SIO_Handle stream Handle returned by SIO_create

3 Pointer to buffer pointer to buffer

4 Size Size of the transaction

5 Arg *arg Pointer to user argument

Page 56 of 145

OMAPL137 BIOS PSP User Guide

5.7 Sources that need re-targeting

5.7.1 ti/pspiom/cslr/soc_OMAPL137.h (soc specific header file):

This file contains target (SoC) specific definitions. In most cases, changing the values
for the of SoC specific details done here should suffice. However, if there are major
changes in the hardware instance then the driver file may be needed to change.

5.8 EDMA3 Dependency
The raster controller driver does not rely on the EDMA LLD driver. The raster
controller interacts with an independent DMA controller provided to it and does not
use any EDMA3 parameter sets.

5.9 Known Issues
Please refer to the top level release notes that came with this release.

5.10 Limitations
 The LCDC controller on OMAPL137 has two modes of operation. One is the

Raster mode and the other is the LIDD mode. However, only one mode can
be operation can be chosen at a time. Following this constraint, the drivers for
these two modes have been separated out and the each mode has a different
driver/module , namely Raster and Lidd. Only one driver should be used at a
time.

For other limitations, please refer to the top level release notes that came with this
release.

5.11 Raster Sample Application

5.11.1.1 Description:

This sample demonstrates the use of the LCDC Raster driver.

The rasterSample.tcf file contains the remaining BIOS configuration like the
configuration of the event combiner, etc. This helps to map the LCDC events to the
CPU interrupts. It also creates a task for the function ‘rasterSampleTask()’, which
runs the sample application.

In particular, the rasterSample.tcf file contains the following important BIOS
configuration settings, which are required in order for the I2c and LCDC Raster
operations to work properly. The most important lines in this file are:

bios.ECM.ENABLE = 1;

bios.HWI.instance("HWI_INT7").interruptSelectNumber = 0;

bios.HWI.instance("HWI_INT8").interruptSelectNumber = 1;

bios.HWI.instance("HWI_INT9").interruptSelectNumber = 2;

bios.HWI.instance("HWI_INT10").interruptSelectNumber = 3;

The above configuration settings are needed to correctly set up the ECM module and
map the I2c and LCDC Raster events to the correct CPU interrupts. For example the
Lcdc event number is 73, which falls under ECM group 2. Here ECM group 2 is
mapped to HWI_INT9, and this is the HWI number used when configuring

Page 57 of 145

OMAPL137 BIOS PSP User Guide

lcdcParams at runtime (explained further below). For more information on the I2C
event mappings, please refer to section 4.11 I2c Sample applications.

Further LCDC Raster static configuration is done in the rasterSample.tci file and
raster.tci file. The rasterSample.tci file uses the UDEV module to configure the user
defined init function “userRasterInit”, and also hook in the LCDC instance parameters
(rasterParams). Additionally, the DIO module is used to connect this UDEV instance
and specify the channel parameters (chanParams); this DIO instance will be needed
to write to the LCDC Raster controller using the SIO module at run time. In the
raster.tci file, the I2C driver is configured, in order for the example to make use of
the I2C GPIO expander on the UI board. It is configured to select the routing signals
of the raster display.

The configuration of the user init function done in the rasterSample.tci file results in
this user defined init function (userRasterInit) to be called before the main()
function. This function in turn calls the actual Raster_init() function (a
requirement if a user defined init function is used), and then sets up the user’s
LCDC Raster instance parameters via “rasterParams”.

The main() function configures the PINMUX and uses the Psc module to enable the
LCDC peripheral.

The rasterSampleTask() task exercises the LCDC Raster driver. It also, utilizes the
I2C driver to read/write to the I2C GPIO expander on the UI board to route the LCDC
signals to the display.

It uses GIO APIS for I2c communication (please refer to the section on I2C driver
and example), and SIO APIs for the LCDC Raster driver channels and also to perform
the IO operations.

Please note that, when the raster channel is closed, the driver disables the raster.
However, the raster display panel may not go “black” owing to the property of the
display. If the user needs such a feature then one may issue an all black image.

5.11.1.2 Build:

This sample can be built using

<ID>/pspiom/examples/evmOMAPL137/lcdcraster/build/ccs3/rasterSample.pjt

IMPORTANT NOTE: rasterSample.pjt contains references to
%EDMA3LLD_BIOS5_INSTALLDIR% environment variable and links with edma3
libraries. This is required because by default the I2c driver library is built with –
DI2c_EDMA_ENABLE. The user can remove all references of EDMA3 from
rasterSample.pjt if he re-builds the I2c library without –DI2c_EDMA_ENABLE.

5.11.1.3 Setup:

The sample does not need any special setup apart from plugging in the OMAPL137
User Interface module.

Page 58 of 145

OMAPL137 BIOS PSP User Guide

5.11.1.4 Output:

When the sample is run an RGB stripe image with a scrolling line on the image is
shown on the raster display.

Page 59 of 145

OMAPL137 BIOS PSP User Guide

6 LCDC LIDD Controller Driver

6.1 Introduction
This document is the reference guide for the LCDC LIDD controller device driver
which explains the features and tips to use them.

DSP/BIOS applications use the driver typically through APIs provided by the GIO
layer, to transmit and receive serial data. The following sections describe in detail
the necessary procedures to configure and use this driver, as well as other additional
information. It is recommended to go through the sample application to get a feel of
initializing and using the LCDC LIDD driver.

6.1.1 Key Features

 Multi-instance able, asynchronous and re-entrant driver.

 Each instance operates as a LIDD controller instance of the LCDC

 Supports multiple display types

6.1.2 References

1 SPRUFM0 TMS320OMAPL137 DSP LCD
Controller User's Guide

6.2 Installation
The LCDC LIDD device driver is a part of PSP package for OMAPL137 platform and is
installed as part of whole package installation.

6.2.1 LCDC LIDD Component folder

On installation of PSP package for OMAPL137, the LCDC LIDD Controller driver can
be found at <ID>\ ti\pspiom\lcdclidd\

As show above the LIDD folder contains sub-folders, the contents of which are
described below.

 lcdclidd - The lcdclidd folder is the place holder for the entire lcdclidd driver
source and the build configuration files. LCDC LIDD driver is implemented as
an IOM driver under DSP/BIOS™ operating system. GIO defined APIs can be
used to interface to LCDC LIDD driver. This folder contains the build
configuration file (package.bld), the LCDC LIDD header file that’s included by
the application (Lidd.h).

 build - contains CCS 3.3 / CCS 4 project files to build the LCDC LIDD library.

 lib – contains the LCDC LIDD libraries.

 src – Place holder for LCDC LIDD driver’s source code.

Page 60 of 145

OMAPL137 BIOS PSP User Guide

6.2.2 Build Options

The LCDC LIDD device driver can be built using the CCS v3.3 project file located at
<ID>\packages\ti\pspiom\lcdclidd\build\OMAPL137\ccs3\lcdclidd.pjt. This project file
supports the following build configurations.

Debug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

iDebug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

 Defines “Lcdc_DEBUGPRINT_ENABLE to enable LIDD driver to LOG debug
messages.

Release:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

iRelease:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

 Defines “Lcdc_DEBUGPRINT_ENABLE to enable LIDD driver to LOG debug
messages.

6.2.2.1 Required and Optional Pre-defined symbols
The LCDC LIDD library must be built with a soc specific pre-defined symbol.

“-DCHIP_OMAPL137” is used above to build for OMAPL137. Internally this define is used to
select a soc specific header file (soc_OMAPL137.h). This header file contains information
such as base addresses of LCDC devices, their interrupt numbers, etc.

If this define is missing, the following compile error will be thrown:

"No chip type defined! (Must use -DCHIP_OMAPL137 or -DCHIP_OMAPL137)"

The LCDC LIDD library can also be built with these optional pre-defined symbols.

Use -DPSP_DISABLE_INPUT_PARAMETER_CHECK when building library to turn OFF
parameter checking. This symbol is defined for Release and iRelease profiles by default in
the CCS 3.3 pjts provided.

Use -DNDEBUG when building library to turn off runtime asserts. This symbol is defined for
Release and iRelease profiles by default in the CCS 3.3 pjts provided.

Page 61 of 145

OMAPL137 BIOS PSP User Guide

6.3 Features
This section details the features of LCDC LIDD (henceforth also referred to as LIDD)
and how to use them in detail.

6.3.1 Multi-Instance Usage

The LIDD driver can be used to operate the LCDC Controller in LIDD mode on the
OMAPL137. Currently, only one driver instance for LIDD is supported during driver
creation time for the OMAPL137. This is because there is only one LCDC LIDD on the
hardware. However, the driver is written in such a way as to support multiple
instances for when new SOCs are added which do have multiple controllers. A LCDC
LIDD driver instance for the OMAPL137 should use a single instance with device ID 0.

This instance can be operated with configurations supported by The LIDD driver. The
device ID can be specified using the deviceId field of a UDEV instance (however,
only deviceId = 0 is supported).

There are two ways in which a new instance of the LIDD driver can be created.

1. Static creation – static creation is done in the “tcf” file of the application; this
creation happens at build time. It’s necessary to configure LCDC LIDD using the
UDEV module (UDEV.create). An instance of the UDEV module at static
configuration time corresponds to creating and initializing an LCDC LIDD
instance.

2. Dynamic creation – Dynamic creation of an LCDC LIDD instance is done in the
application source files by calling DEV_createDevice(); this creation happens at
runtime.

UDEV.create and DEV_createDevice allow user to specify the following:

 iomFxns: Pointer to IOM function table. LIDD requires this field to be
Lidd_IOMFXNS.

 initFxn: LCDC LIDD requires that the user call Lidd_init() as part of this
initFxn. Users can also directly hook in Lidd_init().

 device parameters: LCDC LIDD requires the user to pass an Lidd_Params
struct. This struct must exist in the application source files and it must be
initialized very early as part of driver specific initFxn.

 deviceId to identify the LCDC LIDD peripheral.

For more information on configuring UDEV, DIO and LCDC LIDD, please refer to the
LCDC LIDD sample application (included with this driver release), and the DSP/BIOS
API Reference (spru403o.pdf, included in your DSP/BIOS installation).

6.3.2 I/O using LIDD driver

The LIDD driver can operate only in output mode. This is because, the LCDC LIDD
controller can only output data onto the passive LCD displays. There is nothing to be
read. Hence, the driver only supports a “write” channel creation.

6.4 Configurations
Following tables document some of the configurable parameter of LCDC LIDD device.
Please refer to Lidd.h for complete configurations and explanations.

6.4.1 Device Parameters

This structure defines the device configurations, expected to supply while
instantiating the driver.

Lidd_Params

Page 62 of 145

OMAPL137 BIOS PSP User Guide

Serial
Number

Parameter Description

1 devConf
The device configuration

provided as a
Lidd_DeviceConf structure

6.4.1.1 Lidd_DeviceConf

This structure defines the LCDC device setting configuration.

Serial
Number

Parameter Description

1 clkFreqHz MCLK frequency desired

2 hwiNum
The HWI event number

assigned to the group the
LCDC CPU event belongs to

3 numLines The number of lines in the
display.

3 numCharPerLine The number of characters
on each line in the display.

4 addressArray
Array of line start addresses

for each line incase of
character LCD

5

pscPwrmEnable Boolean flag to enable
(TRUE) or disable (FALSE)
any power management in
the driver

Note: Currently maximum of four line display is supported. The user needs to fill in
the addresses for all the lines even if using less than 4 lines. In this case, the user
can fill zero for the address for lines not used.

6.4.2 Channel Parameters

The channel parameters configure the raster controller operation and are described
below.

Lidd_ChanParams

Serial
Number

Parameter Description

1 controller

The controller type to be
configured. This should be

configured as a
Lidd_controller

2 chanConf
The LIDD controller

configuration, given as
Lidd_DisplayConf

Page 63 of 145

OMAPL137 BIOS PSP User Guide

6.4.2.1 Display Configuration configuration

Lidd_DisplayConf

Serial
Number

Parameter Description

1 displayType The type of display
interfaced.

2 cs0Timing

Strobe signal timong
configuration for device
connected on CS0 chip

select

3 cs1Timing

Strobe signal timing
configuration for device

connected on the CS1 chip
select

4 chipSel

This referes to the chip
select on which the display
device is connected and this

channel is created for.

6.5 Control Commands
Following some of the important control commands for the LIDD controller driver

Command Arguments Description

Lidd_IOCTL_CLEAR_SCREEN Pointer to ioctlCmdArg
type variable.

To clear the display
screen, connected on
chipSelect specified by
the ioctlCmdArg

Lidd_IOCTL_CURSOR_HOME Pointer to ioctlCmdArg
type variable.

To set the cursor to
home position, for the
display connected on
the chipsel specified by
the ioctlCmdArg

Lidd_IOCTL_SET_CURSOR_POSITION Pointer to
CursorPosition structure

To set the cursor to a
particular position in the
display

Lidd_IOCTL_SET_DISPLAY_ON Pointer to ioctlCmdArg
type variable.

To turn the display on
for the chipsel specified
by the ioctlCmdArg

Lidd_IOCTL_SET_DISPLAY_OFF Pointer to ioctlCmdArg
type variable.

To turn the display off
for, the chipsel specified
by the ioctlCmdArg

Lidd_IOCTL_SET_BLINK_ON Pointer to ioctlCmdArg To turn the cursor blink

Page 64 of 145

OMAPL137 BIOS PSP User Guide

type variable. on for display, on the
chipsel specified by the
ioctlCmdArg

Lidd_IOCTL_SET_BLINK_OFF Pointer to ioctlCmdArg
type variable.

To turn the cursor blink
off for display, on the
chipsel specified by the
ioctlCmdArg

Lidd_IOCTL_SET_CURSOR_ON Pointer to ioctlCmdArg
type variable.

To show the cursor for
display, on the chipsel
specified by the
ioctlCmdArg

Lidd_IOCTL_SET_CURSOR_OFF Pointer to ioctlCmdArg
type variable.

To not show the cursor
for display, on the
chipsel specified by the
ioctlCmdArg

Lidd_IOCTL_SET_DISPLAY_SHIFT_ON Pointer to ioctlCmdArg
type variable.

To turn the display shift
on for display, on the
chipsel specified by the
ioctlCmdArg

Lidd_IOCTL_SET_DISPLAY_SHIFT_OFF Pointer to ioctlCmdArg
type variable.

To turn the display shift
off for display, on the
chipsel specified by the
ioctlCmdArg

Lidd_IOCTL_CURSOR_MOVE_LEFT Pointer to ioctlCmdArg
type variable.variable
containing the interrupt
mask

To move the cursor left
display, on the chipsel
specified by the
ioctlCmdArg

Lidd_IOCTL_CURSOR_MOVE_RIGHT Pointer to ioctlCmdArg
type variable.variable
containing the interrupt
mask

To move the cursor
right display, on the
chipsel specified by the
ioctlCmdArg

Lidd_IOCTL_DISPLAY_MOVE_LEFT Pointer to ioctlCmdArg
type variable.variable
containing the interrupt
mask

To move the display
left, on the chipsel
specified by the
ioctlCmdArg

Lidd_IOCTL_DISPLAY_MOVE_RIGHT Pointer to ioctlCmdArg
type variable.variable
containing the interrupt
mask

To move the display
right, on the chipsel
specified by the
ioctlCmdArg

Lidd_IOCTL_COMMAND_REG_WRITE

Pointer to Integer type
variable

A generic IOCTL to write
a command word to the
Character display

6.6 Use of LIDD driver through GIO APIs

Page 65 of 145

OMAPL137 BIOS PSP User Guide

6.6.1 GIO_create

Parameter
Number

Parameter Specifics to Lidd

1 Device Name string Unique identifier used to identify this driver.
Please note the name should be same as
specified while creating the driver. (Either
through tcf or DEV_createDevice()

2 Channel Mode Should be “IOM_INPUT” when UART requires
to received data and “IOM_OUTPUT” when
UART requires to transmit

3 Status Address to place return status from Uart.

4 Channel Params Pointer to chanParams structure for Uart
channel.

5 GIO_Attrs * Parameters required for the creation of the
GIO instance (e.g. channel parameters)

6.6.2 GIO_control

Parameter
Number

Parameter Specifics to PSP

1 GIO_Handle Handle returned by GIO_create

2 Command IOCTL command defined by UART
driver

3 Arguments Misc arguments if required by the
command

6.6.3 GIO_write

Parameter
Number

Parameter Specifics to Raster

1 Channel Handle Handle returned by GIO_create

2 Pointer to buffer Should be pointer to variable of
type PSP_Uart_PktAddrPayload OR
Uint32 * that holds the audio
data.

3 Pointer to size of buffer Size of the transaction

Page 66 of 145

OMAPL137 BIOS PSP User Guide

6.7 Sources that need re-targeting

6.7.1 ti/pspiom/cslr/soc_OMAPL137.h (soc specific header file):

This file contains target (SoC) specific definitions. In most cases, changing the values
for the of SoC specific details done here should suffice. However, if there are major
changes in the hardware instance then the driver file may be needed to change.

6.8 EDMA3 Dependency
The LIDD controller driver does not rely on the EDMA LLD driver. The controller
interacts with an independent DMA controller provided to it and does not use any
EDMA3 paramsets.

6.9 Known Issues
Please refer to the top level release notes that came with this release.

6.10 Limitations
 The LCDC controller on OMAPL137 has two modes of operation. One is the

Raster mode and the other is the LIDD mode. However, only one mode can
be operation can be chosen at a time. Following this constraint, the drivers for
these two modes have been separated out and the each mode has a different
driver/module, namely Raster and Lidd. Only one driver should be used at a
time.

For other limitations, please refer to the top level release notes that came with this
release.

6.11 LIDD Sample Application

6.11.1.1 Description

This sample demonstrates the use of the LCDC LIDD driver.

The LCDC LIDD driver along with the required component modules are configured
statically in liddSample.cfg file. It also instantiates the I2C driver to configure the
I2C GPIO expander on UI board, to configure it to select routing of signals the raster
display.

The liddSample.cfg file contains the remaining BIOS configuration like the
configuration of the event combiner etc. This helps to map the LCDC events to the
CPU interrupts.

The main () function configures the PINMUX and uses the Psc module to enable the
LCDC peripheral. It creates a task ‘liddSampleTask()’ to run the sample application.

The liddSampleTask() task exercises the LIDD driver. It also, utilizes the I2C driver
to read/write to the I2C GPIO expander on the UI board to route the LCDC signals to
the display.

It uses Stream APIS to create I2C and LCDC LIDD driver channels and also to
perform the IO operations.

Page 67 of 145

OMAPL137 BIOS PSP User Guide

6.11.1.2 Build:

 This sample can be built using the CCS interface.

IMPORTANT NOTE: The I2C driver contains EDMA references, and hence, user should
ensure that the EDMA package path is properly taken care of in the project.

There is also facility for users to compile the project using the command line. The file
package.bld takes care of the necessary steps to compile the project from command
line.

Please refer to the “Integration Guide” section for more details about building the
project.

6.11.1.3 Setup:

 The Raster display should be removed from the OMAPL137 Interface Module
(UI board)

 The HDM24216-H 24x2 character display should be plugged into J2 on the UI
board.

 The R55 potentiometer should be adjusted to provide sufficient voltage (4.5-
4.7V). To verify ensure this see that first line of display shows 24 squares
glowing brightly.

6.11.1.4 Output:

When the sample is run a Welcome scrolling message is displayed on the character
display module and the sample application performs some operations on the same.

Page 68 of 145

OMAPL137 BIOS PSP User Guide

7 SPI driver

7.1 Introduction
This document is the reference guide for the device driver which explains the
features and tips to use them.

DSP/BIOS applications use the driver typically through APIs provided by the GIO
layer, in order to transmit and receive serial data. The following sections describe in
detail the necessary procedures to configure and use this driver, as well as other
additional information. It is recommended to go through the sample application to
get a feel of initializing and using the Spi driver.

7.1.1 Key Features

 Multi-instanceable and re-entrant driver

 Each instance can operate as an receiver and or transmitter

 Supports Polled, Interrupt and DMA Interrupt Mode of operation

 Supports using the GPIOs (External to SPI) to be used as additional
chipselects.

7.2 Installation
The Spi device driver is a part of PSP package for the OMAPL137 and would be
installed as part of whole package installation. For high level design information
please refer to the driver architecture guide that came with this package (available at
<ID>\ti\pspiom\spi\docs).

7.2.1 SPI Component folder

On installation of PSP package for the OMAPL137, the SPI driver can be found at
<ID>\ ti\psp\spi\

As show above the spi folder contains several sub-folders, the contents of which are
described below.

 spi - The spi folder is the place holder for the entire SPI driver, documents
and the build configuration files. This folder contains Spi.h, which is the
header file included by the application.

 build - contains CCS 3.3 / CCS 4 project files to build the SPI library.

 docs – Contains doxygen generated API reference.

 src – Contains the SPI driver’s source code.

7.2.2 Build Options

The SPI library can be built using the CCS v3.3 project file located at
<ID>\packages\ti\pspiom\spi\build\OMAPL137\ccs3\spi.pjt. This project file supports
the following build configurations.

IMPORTANT NOTE:

Page 69 of 145

OMAPL137 BIOS PSP User Guide

All build configurations require environment variable
%EDMA3LLD_BIOS5_INSTALLDIR% to be defined. This variable must point to
“<EDMA3_INSTALL_DIR>\packages”.

Debug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

 Defines “-DSpi_EDMA_ENABLE” to enable EDMA3 support in SPI driver. It also
contains “-i%EDMA3LLD_BIOS5_INSTALLDIR%” to find EDMA3 header files.

iDebug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

 Defines “-DSpi_EDMA_ENABLE” to enable EDMA3 support in Spi driver. It also
contains “-i%EDMA3LLD_BIOS5_INSTALLDIR%” to find EDMA3 header files.

 Defines “Spi_DEBUGPRINT_ENABLE to enable Spi driver to LOG debug
messages.

Release:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

 Defines “-DSpi_EDMA_ENABLE” to enable EDMA3 support in Spi driver. It also
contains “-i%EDMA3LLD_BIOS5_INSTALLDIR%” to find EDMA3 header files.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

iRelease:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

 Defines “-DSpi_EDMA_ENABLE” to enable EDMA3 support in Spi driver. It also
contains “-i%EDMA3LLD_BIOS5_INSTALLDIR%” to find EDMA3 header files.

 Defines “Spi_DEBUGPRINT_ENABLE to enable Spi driver to LOG debug
messages.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

7.2.2.1 Required and Optional Pre-defined symbols
The Spi library must be built with a soc specific pre-defined symbol.

“-DCHIP_OMAPL137” is used above to build for OMAPL137. Internally this define is used to
select a soc specific header file (soc_OMAPL137.h). This header file contains information
such as base addresses of SPI devices, their event numbers, etc.

The Spi library can also be built with these optional pre-defined symbols.

Use –DSpi_EDMA_ENABLE when building library to enable DMA support in Spi driver. If this
symbol is not defined edma specific code will get eliminated and the driver can be used only
in POLLED or INTERRUPT mode.

Page 70 of 145

OMAPL137 BIOS PSP User Guide

Use -DPSP_DISABLE_INPUT_PARAMETER_CHECK when building library to turn OFF
parameter checking. This symbol is defined for Release and iRelease profiles by default in
the CCS 3.3 pjts provided.

Use -DNDEBUG when building library to turn off runtime asserts. This symbol is defined for
Release and iRelease profiles by default in the CCS 3.3 pjts provided.

7.3 Features
This section details the features of SPI and how to use them in detail.

7.3.1 Multi-Instance

The SPI driver can operate on all the instances of SPI on the EVMOMAPL137.
Different instances may be specified during driver creation time, and instances 0
through 2 with corresponding device IDs 0 through 2 are supported, respectively.

These instances can operate simultaneously with configurations supported by the SPI
driver. SPI instances are created as follows:

1. Static creation – static creation is done in the “tcf” file of the application;
this creation happens at build time. The UDEV module (UDEV.create) is
used during static configuration. An instance of the UDEV module at static
configuration time corresponds to creating and initializing an SPI instance

2. Dynamic creation – Dynamic creation of an SPI instance is done in the
application source files by calling DEV_createDevice(); this creation
happens at runtime.

UDEV.create and DEV_createDevice allow user to specify the following:

 iomFxns: Pointer to IOM function table. SPI requires this field to be
Spi_IOMFXNS.

 initFxn: SPI requires that the user call Spi_init() as part of this initFxn.
Users can also directly hook in Spi_init().

 device parameters: SPI requires the user to pass an Spi_Params struct. This
struct must exist in the application source files and it must be initialized very
early as part of driver specific initFxn.

 deviceId to identify the SPI peripheral.

For more information on configuring UDEV and SPI, please refer to the Spi sample
application (included with this driver release), and the DSP/BIOS API Reference
(spru403o.pdf, included in your DSP/BIOS installation).

7.3.2 Each Instance as Transmitter and / or receiver

Each SPI instance can be used for creating channels for transmit and receive
operation. The same channel can be used for both transmit and receive operation.
This could be achieved by opening a stream Channel as an INOUT channel . The type
of Channel is specified while creating the channel (using GIO_create() and
specifying “IOM_INOUT”). The configuration parameters are explained in the sections
to follow.

7.3.3 Supports using the GPIOs (External to SPI) to be used as additional chipselects

In scenario where the number of SPI slaves on the EVM are more than the number of
native CS lines of the SPI master on the SOC, this feature comes for help.

Free GPIOs could be used for this purpose and if programmed properly, SPI driver
internally talks to GPIO driver to toggle the state of corresponding GPIO to act as CS

Page 71 of 145

OMAPL137 BIOS PSP User Guide

signal. Detailed information is given below on how to configure the SPI driver for this
purpose

7.4 Configurations
Following tables document some of the configurable parameter of SPI. Please refer to
Spi.h for complete configurations and explanations.

7.4.1 Spi_Params

This structure defines the device configurations, expected to supply while creating
the driver.

Members Description

enableCache This option is used if the driver should take care of
validating/invalidating the cache for the buffers
provided by the user.

opMode Whether the SPI driver should operate in Polled or
Interrupt or DMA Interrupt Mode

outputClkFreq The clock frequency the SPI instance should generate
in case of master mode of operation

loopbackEnabled If the driver/device works in loopback mode

polledModeTimeout The data transfer timeout for polled mode of operation

spiHWCfgData The configuration of hardware instance specifc options

edmaHandle Handle to PSP EDMA LLD driver

hwiNumber The hardware interrupt number assigned for SPI
events

pscPwrmEnable Boolean flag to enable (TRUE) or disable (FALSE) any
power management in the driver

Note: Please note that in slave mode, power management is not supported.

Apart from the instance parameters described above module wide constants declared in Spi.h can be
changed e.g Spi_BUFFER_DATA_SIZE. These constants apply to all Spi instances. Communication
mode of operation whether the instance is acting as a slave or master may also be configured.

Additionally, Build options can be added or removed to add/remove features. e.g –
DSpi_EDMA_ENABLE.

7.4.2 Spi_ChanParams

Applications could use this structure to configure the channel specific configurations.

Members Description
hEdma The handle to the EDMA driver. Required only when operating

in DMA interrupt mode. Also, note that when operating in DMA
interrupt mode, the necessary define switch –
DSpi_EDMA_ENABLE should be thrown, as described in section
“Build Options".

hGpio The handle to the GPIO driver. Required only when using any

Page 72 of 145

OMAPL137 BIOS PSP User Guide

GPIOs for CS operation.

7.4.3 Spi_ChanParams

This buffer is used to submit data transfer requests to the SPI driver.

Members Description
outBuffer Pointer to the output buffer specified by the application. Can

be specified as NULL in case of only read operation
inBuffer Pointer to the buffer to hold the input data. Can be specified

as NULL in case of only write operation.
bufLen Total buffer length. Should be the size of the total transceive

operation.
chipSelect The chip select to be used for selecting the slave device.
dataFormat The data format to be used by the SPI (out of the 4 different

data formats supported by it.)
flags Flags to indicate the current operation (Read/write etc).
param Parameter kept for future use.
gpioPinNum Specifies which pin should be used as CS in case of GPIO CS
csToTxDelay Specifies the delay between CS assertion and start of I/O

transfer

Note:

 The SPI driver is in transceive mode hence it is required to provide both the input
and output buffers in case of a transceive operation. In case that the application
wants to perform either a read only or write only operation, it is sufficient for it to
provide the input buffer or the output buffer only. The other buffer can be
specified as NULL.

 The “chipSelect” parameter specifies which chip select(s) should be used for the
current transaction. This parameter is a bitmask of chip selects that are required
to be used. For example if chip select 0 and 2 are to be used (0 being the first
chip select) then the “chipSelect” should contain a mask = 0x101. Note that bit 0
and bit 2 are set to indicate the use of chipselect 0 and chipselect 2. This
configures the appropriate bits (0 and 2) in SCS0FUN field of the SPIPC0 register
along with “csDefault” parameter value as described below.

 The “csDefault” parameter in the “spiHWCfgData” of device parameter specifies
the configuration bitmask for chip select(s) state in the inactive period. If
suppose, chip select 0 and chip select 2 are to used with the respective chip
select lines to be high in the inactive state (active high chip select behavior), then
“csDefault” should be like 0x101. This value is set in the CSDEF field of the
SPIDEF register.

 Spi_IOCTL_SET_CS_POLARITY can be used to toggle the polarity of “csDefault”
values. If “isCsActiveHigh” of the command argument (Spi_CsPolarity structure)
is FALSE, then the respective bits in “csMask” of the command argument, is set

Page 73 of 145

OMAPL137 BIOS PSP User Guide

in “csDefault”. If “isActiveHigh” of the command argument is TRUE, then the
respective bits in “csMask” of the command argument, is reset in “csDefault”.

 If it is required that CS0 and CS2 are to be used in active low configuration, then
“csDefault” should be 0x101 (inactive high or active low), “chipSelect” should be
0x101. If it is required that CS0 and CS2 are to be used in active high
configuration, then “csDefault” should be 0x000 (inactive low or active high),
“chipSelect” should be 0x101.

7.4.4 Polled Mode

The configurations required for polled mode of operation are:

Instance configuration opMode should be set to Spi_OpMode_POLLED. Additionally
the timeout parameter for the data transfer operation can be configured as required.
For example, polledModeTimeout could be set to 1000 Ticks, while the default value
is WAIT_FOREVER.

For polled mode of operation the driver does not implement the task sleeping in
between checks for data ready status, during data transfer. This is because, while in
sleep the data may arrive and the data may go unread. This can be more prevalent
with increasing data clock frequencies. This non use of task sleep results in a tight
while loop for checking data ready status during transfers and may block out other
tasks in the system from executing, for the timeout duration set by the user. Hence,
it is advised that in slave mode interrupt mode of operation may be used.

7.4.5 Interrupt Mode

The configurations required for interrupt mode of operation are:

Instance configuration opMode should be set to Spi_OpMode_INTERRUPT.
Additionally the hwiNumber assigned by the application for the SPI CPU events group
should be passed, so that the driver can enable proper interrupts.

It is recommended to start from the sample application and modify it further to meet
the need of the actual application.

7.4.6 DMA Interrupt Mode

The configurations required for DMA Interrupt mode of operation are:

Instance configuration opMode should be set to Spi_OpMode_DMAINTERRUPT.
Additionally the hwiNumber assigned by the application for the SPI CPU events group
should be passed, so that the driver can enable proper interrupts. Also, as part of
chanParams, the handle to the EDMA driver, hEdma, should be passed by the
application.

Note that -DSpi_EDMA_ENABLE define should be supplied as a compiler switch for
proper operation in this mode, so the sample application initializes the edma driver
and passes the appropriate chanParams.

It is recommended to start from the sample application and modify it further to meet
the need of the actual application.

7.4.7 Slave Mode

The option of slave mode (or master mode) of operation, should be supplied along
with the Spi_HWConfigData (device parameter) structure (masterOrSlave field) in
the Spi device parameters, when creating an instance of the module. This is because
the mode of operation is fixed for one instance and cannot be changed dynamically
or per-channel per instance. Also note that in slave mode of the device only one
channel can be opened.

Page 74 of 145

OMAPL137 BIOS PSP User Guide

Note that -DSpi_EDMA_ENABLE define should be supplied as a compiler switch for
proper operation in this mode, so the sample application initializes the edma driver
and passes the appropriate chanParams.

Please note the following

 Slave mode of operation is tested at 2MHz. Because of the wired EVM to EVM
connectivity in the test setup, signal integrity was not good to test on further
higher frequencies.

 (a) Application protocol also needs to consider the latency caused by software
slave implementation. (b) The driver does not support “0” no of byte transfer.

7.5 Control Commands
Following table describes some of important the control commands, for a
comprehensive list please refer the ICOTL defined in Spi.h.

Command Arguments Description

Spi_IOCTL_CANCEL_PENDIN
G_IO

None Cancels all the pending I/O
requests

Spi_IOCTL_SET_CS_POLARI
TY

Bool * Configures the CS polarity to
High or Low

Spi_IOCTL_SET_POLLEDMOD
ETIMEOUT

UInt32 * To change the value for polled
mode timeout

7.6 Use of SPI driver through GIO APIs
The following sections explain the use of parameters of GIO calls in the context of
the PSP driver. Note that no effort is made to document the use of GIO calls; any
PSP specific requirements are covered below.

7.6.1 GIO_create

Parameter
Number

Parameter Description

1 Device Name string Unique identifier used to identify this driver.
Please note the name should be same as
specified while creating the driver. (Either
through TCF or DEV_createDevice()

2 Channel Mode Should be “IOM_INPUT” when SPI requires to
received data and “IOM_OUTPUT” when SPI
requires to transmit

3 GIO_Attrs * Parameters required for the creation of the
GIO instance (e.g. channel parameters)

Page 75 of 145

OMAPL137 BIOS PSP User Guide

7.6.2 GIO_control

Parameter
Number

Parameter Specifics to PSP

1 GIO_handle Handle returned by GIO_create

2 Command IOCTL command defined by SPI
driver

3 Arguments Misc arguments if required by the
command

7.6.3 GIO_write/read

Parameter
Number

Parameter Specifics to PSP

1 Channel Handle Handle returned by GIO_create

2 Pointer to buffer Should be pointer to variable of
type PSP_Spi_PktAddrPayload OR
Uint32 * that holds the audio
data.

3 Size Size of the transaction

7.7 Use of GPIO as chip select
In some cases where the SPI slaves that require CS signal is more than that could be
supported by the SPI peripheral, an unused GPIO pin could be used to generate chip
select signal/lines.

The SPI driver supports this feature of using a GPIO pin as chip select, by using GPIO
module calls internally. (Please refer to GPIO user guide for details on GPIO module)

Following are the steps to enable and use this feature in the applications:

1. Creation of GPIO instance

a. Create a handle to the GPIO module in the application C file :

Example:

 /* start with the default params */

 Gpio_Params gpioParams = Gpio_PARAMS;

 /* update the gpio parameters to our needs */

 gpioParams.instNum = 0;

/* Let us assume GP0_13 –One needs to mark this pin and the associated
back as not in use as anything else in the system. Also, in this use case
ignore hwiNum */

 gpioParams.BankParams[0].inUse = Gpio_InUse_No;

 gpioParams.BankParams[0].hwiNum = 9;

 /*

 It is to be noted here that the pin numbers in GPIO peripheral user guide

 starts from 1 and end at N. However the GPIO params uses arrays to maintain

Page 76 of 145

OMAPL137 BIOS PSP User Guide

 the pin and bank configuration info. Hence, respective position for this

 pin in the array will be (pinNumber-1).

 */

 gpioParams.BankParams[0].PinConfInfo[12].inUse = Gpio_InUse_No;

 gpioParams.BankParams[0].PinConfInfo[12].inUse = Gpio_InUse_No;

 /* open the GPIO driver to get a handle to it */

 gpio0 = Gpio_open(&gpioParams);

This GPIO driver handle should be passed as part of channel parameter
(hGpio) during channel creation. The GPIO CS operation is un-defined without
a valid GPIO handle.

2. GPIO pin as chip select for each data transfer

a. The driver facilitates selection between the CS signal or GPIO signal to be
used as Chip Select, for every transfer. If Spi_DataParam.flags contains
Spi_GPIO_CS then GPIO line will be used as chip select else, the CS signal will
be used as chip select. Thus, each transfer (read/write) could be destined for
a slave on CS or GPIO.

 Example:

Spi_DataParam dataparam;

/* GPIO CS is supported only with CSHOLD feature */

dataParam.flags = Spi_GPIO_CS | Spi_CSHOLD;

Here the slave on GPIO is selected, else the slave on CS selected

b. Specify the GPIO pin number to be used as CS.

Example:

dataParam. gpioPinNum = 13

Note:

The chip select signal generated on the GPIO pin has the following constraints:

a. GPIO chip select and native chip select functionality are not supported
together in a single submit.

b. This, GPIO as chip select, feature is done by driver in software. Hence, it
may not satisfy the strict timing requirements like a normal CS signal. For
instance, the GPIO used as chip select is activated and deactivated just
before actually writing the first word into SPIDAT and deactivated after a
data transfer (word or whole request, depending on Spi_CSHOLD in
Spi_DataParam.flags) is complete. So, here one can see that GPIO chip
select is activated a little earlier than required and deactivated a little later
than required. This adds to some latency in throughput of transfers.

c. GPIO as chip select feature is available only if Spi_CSHOLD flag is included
in the Spi_DataParams.flags for every transfer.

d. The GPIO pin used as CS is selectable for every transfer since the GPIO
pin number is part of the dataParam.

e. The delay required between CS assertion and start of data transfer (clock
out) is programmable via “csToTxDelay” of the Spi_DataParam structure

Page 77 of 145

OMAPL137 BIOS PSP User Guide

for each transfer. However, this delay parameter is just a count that is
used in a tight loop inside. This delay loop is not calibrated and the
application should adjust this parameter as required.

f. If required GPIO CS polarity can be set as required before each transfer
by using the Spi_IOCTL_SET_CS_POLARITY ioctl command request.

7.8 Sources that need re-targeting

7.8.1 ti/pspiom/cslr/soc_OMAPL137.h (soc specific header file):

This file contains target (SoC) specific definitions. In most cases, changing the values
for the of SoC specific details done here should suffice. However, if there are major
changes in the hardware instance then the driver file may be needed to change.

7.9 Use of GPIO as chip select
Any available GPIO pin can be configured as SPI Chip select pin. The user can select
any free available GPIO pin and set the gpioChipselectFlag, to use that GPIO pin as
SPI chip select pin.

7.10 EDMA3 Dependency
SPI driver relies on EDMA3 LLD driver to move data from/to application buffers to
peripheral; typically EDMA3 driver is PSP deliverable unless mentioned otherwise.
Please refer to the release notes that came with this release. Please ensure that
current PSP release is compliant with version of EDMA3 driver being used.

7.10.1 Used Paramset of EDMA 3
SPI driver uses TWO paramsets of EDMA3; if there are no paramsets are available the PSP
driver creation would fail. These paramsets are used through the life time of PSP driver. No link
paramsets are used.

7.11 Known Issues
Please refer to the top level release notes that came with this release.

7.12 Limitations
Please refer to the top level release notes that came with this release.

7.13 Spi Sample applications

7.13.1 Interrupt mode sample

7.13.1.1 Description:

This sample demonstrates the use of the Spi driver in interrupt mode.

This example uses the Spi bus to write an array of data to the W25X32 Spi flash
memory of the evmOMAPL137. Once the data has been written, the Spi bus again is
used to read the same data from the spi flash memory. The data read is then

Page 78 of 145

OMAPL137 BIOS PSP User Guide

compared with the data that was written, and if it matches then the operation is
considered a success.

The reads and writes to the spi flash memory are accomplished by use of both the
Spi and the GIO modules, in combination. The Spi driver is used to configure and
set up the Spi bus, and the GPIO module APIs are used to perform the actual reads
and writes to the spi flash memory, via the Spi bus.

The Spi driver is configured both statically in the spiSample.tci and spiSample.tcf
files, as well as at run time in the spiSample_main.c and spiSample_io.c files.

The spiSample.tcf file contains important BIOS configuration settings, which are
required in order for the Spi operations to work properly. The most important lines
in this file are:

bios.ECM.ENABLE = 1;

bios.HWI.instance("HWI_INT8").interruptSelectNumber = 1;

The above configuration settings are needed to correctly set up the ECM module and
map the Spi event to CPU interrupt. For example the Spi event number is 37, which
falls under ECM group 1. Here ECM group 1 is mapped to HWI_INT8, and this is the
HWI number used when configuring spiParams at runtime (explained further below).

Further Spi static configuration is done in the spiSample.tci file, which uses the UDEV
module to configure the user defined init function “SpiUserInit”, and also hook in the
Spi instance parameters (spiParams).

At run time, this results in the Spi user defined init function to be called before the
main() function. This function in turn calls the actual Spi_init() function (a
requirement if a user defined init function is used), and then sets up the user’s Spi
instance parameters via “spiParams”.

Once initialization has completed, the main() function runs, configuring the PINMUX.
Following this, the user defined task “echoTask()” runs, which creates GIO Spi read
and write handles. These handles are then used when calling the GIO_submit() API
to actually write and read data to and from the spi flash memory.

7.13.1.2 Build:

 This sample can be built using

<ID>/packages/ti/pspiom/examples/evmOMAPL137/spi/interrupt/build/ccs3/spiSam
ple.pjt

IMPORTANT NOTE: spiSample.pjt contains references to
%EDMA3LLD_BIOS5_INSTALLDIR% environment variable and links with edma3
libraries. This is required because by default the Spi driver library is built with –
DSpi_EDMA_ENABLE. The user can remove all references of EDMA3 from
spiSample.pjt if he re-builds the Spi library without –DSpi_EDMA_ENABLE.

Page 79 of 145

OMAPL137 BIOS PSP User Guide

7.13.1.3 Setup:

No special setup is needed to run the Spi example

Warning: Please note that the sample application erases the FLASH during
the execution, before it starts with the read/write test

7.13.1.4 Output:

When the sample runs, it will output the following:
write is Enabled

write is Enabled

BIOS SPI:SPI sample transceive ended successfully

!!! PSP HrtBt

!!! PSP HrtBt

............

7.13.2 Dma mode sample

7.13.2.1 Description:

This sample demonstrates the use of the Spi driver in EDMA mode. In EDMA mode,
the Spi driver uses DMA for data transfers, instead of the CPU.

This example uses the Spi bus to write an array of data to the W25X32 Spi flash
memory of the evmOMAPL137. Once the data has been written, the Spi bus again is
used to read the same data from the spi flash memory. The data read is then
compared with the data that was written, and if it matches then the operation is
considered a success.

The reads and writes to the spi flash memory are accomplished by use of both the
Spi and the GIO modules, in combination. The Spi driver is used to configure and
set up the Spi bus, and the GIO module APIs are used to perform the actual reads
and writes to the spi flash memory, via the Spi bus.

The Spi driver is configured both statically in the spiSample.tci and spiSample.tcf
files, as well as at run time in the spiSample_main.c and spiSample_io.c files.

The spiSample.tcf file contains important BIOS configuration settings, which are
required in order for the Spi operations to work properly. The most important lines
in this file which the user would need in their application are:

bios.ECM.ENABLE = 1;

bios.HWI.instance("HWI_INT7").interruptSelectNumber = 0;

bios.HWI.instance("HWI_INT8").interruptSelectNumber = 1;

bios.HWI.instance("HWI_INT9").interruptSelectNumber = 2;

bios.HWI.instance("HWI_INT10").interruptSelectNumber = 3;

Page 80 of 145

OMAPL137 BIOS PSP User Guide

The above configuration settings are needed to correctly set up the ECM module and
map the EDMA events to CPU interrupts. Since the CPU is not used in Spi transfers
in EDMA mode, these ECM groups must be mapped to the EDMA events as shown.

Further Spi static configuration is done in the spiSample.tci file, which uses the UDEV
module to configure the user defined init function “SpiUserInit”, and also hook in the
Spi instance parameters (spiParams).

At run time, this results in the Spi user defined init function to be called before the
main() function. This function in turn calls the actual Spi_init() function (a
requirement if a user defined init function is used), and then sets up the user’s Spi
instance parameters via “spiParams”.

Once initialization has completed, the main() function runs, configuring the PINMUX.
Following this, the user defined task “echoTask()” runs, which creates GIO Spi read
and write handles. These handles are then used when calling the GIO_submit() API
to actually write and read data to and from the spi flash memory.

7.13.2.2 Build:

 This sample can be built using

<ID>/packages/ti/pspiom/examples/evmOMAPL137/spi/edma/build/ccs3/spiSample.
pjt

IMPORTANT NOTE: spiSample.pjt assumes that the Spi driver library is built with –
DSpi_EDMA_ENABLE.

7.13.2.3 Setup:

No special setup is needed to run the Spi example

Warning: Please note that the sample application erases the FLASH during
the execution, before it starts with the read/write test

7.13.2.4 Output:

When the sample runs, it will output the following:
EDMA3 : edma3init() passed

write is Enabled

write is Enabled

BIOS SPI:SPI sample transceive ended successfully

!!! PSP HrtBt

!!! PSP HrtBt

Page 81 of 145

OMAPL137 BIOS PSP User Guide

8 PSC driver

8.1 Introduction
This document is the reference guide for the device driver which explains the
features and tips to use them.

DSP/BIOS applications use the driver directly to configure the Psc peripherals. The
following sections describe in detail, procedures to use this driver. It is recommended
to go through the sample applications to get familiar with using the Psc driver.

8.1.1 Key Features

 Does NOT support instances. Simple module level functions.

 Standalone module (driver) ; does not implement IOM interface.

8.2 Installation
The Psc device driver is a part of PSP product for EVMOMAPL137 and would be
installed as part of whole package installation.

8.2.1 PSC Component folder

On installation of PSP package for OMAPL137, the PSC driver can be found at <ID>\
ti\pspiom\psc

As show above the psc folder contains sub-folder, contents of which are described
below.

 psc - The psc folder is the place holder for the entire PSC driver. This folder
contains Psc.h which is the header file included by the application.

 build – contains CCS 3.3 / CCS 4 project file to build Psc library.

 docs – Contains doxygen generated API reference.

 lib – contains Psc libraries

 src – contains Psc driver’s source code.

8.2.2 Build Options

The Psc library can be built using the CCS v3.3 project file located at
<ID>\packages\ti\pspiom\psc\build\OMAPL137\ccs3\psc.pjt. This project file
supports the following build configurations.

IMPORTANT NOTE:

All build configurations require environment variable
%EDMA3LLD_BIOS5_INSTALLDIR% to be defined. This variable must point to
“<EDMA3_INSTALL_DIR>\packages”.

Debug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

Page 82 of 145

OMAPL137 BIOS PSP User Guide

iDebug

Release

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

8.3 Features
This section details the features of PSC and how to use them in detail.

8.4 Use of PSC driver through module APIs
Following sections explain the use of parameters of module calls in the context of
PSP driver. Any PSP specific requirements are covered below.

8.4.1 Psc_ModuleClkCtrl

Parameter
Number

Parameter Specifics to PSP

1 Psc device Id Psc_DevId_0 or Psc_DevId_1

2 Module Id LPSC number for module

3 isClockEnabled TRUE or FALSE

This call returns enables/disables the clock domain for the module specified. The
sample applications (PSC does not have a separate sample application) all use Psc
APIs to configure enable the peripherals.

8.5 Sources that need re-targeting

8.5.1 ti/pspiom/cslr/soc_OMAPL137.h (soc specific header file):

This file contains target (SoC) specific definitions. In most cases, changing the values
for the of SoC specific details done here should suffice. However, if there are major
changes in the hardware instance then the driver file may be needed to change.

8.6 EDMA3 Dependency
The PSC driver does not depend on the EDMA3 LLD driver. It does not support any
data transfer operations.

8.7 Known Issues
Please refer to the top level release notes that came with this release.

8.8 Limitations
Please refer to the top level release notes that came with this release.

Page 83 of 145

OMAPL137 BIOS PSP User Guide

9 Mcasp driver

9.1 Introduction
This document is the reference guide for the Mcasp device driver which explains the
features and guidelines for using the driver.

DSP/BIOS applications use the driver typically through APIs provided by SIO layer,
to transmit and receive audio data. The following sections describe in detail, the
procedures to use this driver and configure it. It is recommended to go through the
sample application to get familiar with initializing and using the Mcasp driver.

9.1.1 Key Features

 Multi-instance support and re-entrant driver

 Each instance can operate as a receiver and or transmitter.

 Supports multiple data formats.

 Can be configured to operate in multi-slot TDM, I2S, DSP and DIT (S/PDIF).

 Mechanisms to transmit desired data (such as NULL tone) when idle.

 Explicit control of PIN directions for High Clock, Bit Clock and Frame Sync
PINS by the driver.

9.1.2 Terms and Abbreviations

API Application Programmer’s Interface

CSL TI Chip Support Library – primitive h/w abstraction.

IP Intellectual property

ISR Interrupt Service Routine

OS Operating System

S/PDIF Sony Philips Digital Interface

TDM Time Division Multiplexing

I2S Inter-Integrated Sound Format

ID Installation Directory

9.1.3 References

1 SPRUFM1 OMAPL138 McASP Reference Guide

2 TLV320AIC31IRHBRG4_3960631 Stereo Audio Codec Data Manual

Page 84 of 145

OMAPL137 BIOS PSP User Guide

9.2 Installation
The Mcasp device driver is a part of PSP product for OMAPL138 and would be
installed as part of product installation.

9.2.1 PSP Component folder

On installation of the PSP package for OMAPL138, the PSP driver can be found at
<ID>\ ti\pspiom\mcasp

As shown above the mcasp folder contains several sub-folders, the contents of which
are described below:

 Mcasp - The Mcasp folder is the place holder for the entire Mcasp driver. This
folder contains Mcasp.h which is the header file included by the application.

 build – contains CCS 3.3 / CCS 4 project file to build Mcasp library.

 docs – Contains doxygen generated API reference.

 lib – contains Mcasp libraries

 src – contains Mcasp driver’s source code.

9.2.2 Build Options

The Mcasp library can be built using the CCS v3.3 project file located at
<ID>\packages\ti\pspiom\mcasp\build\OMAPL138\ccs3\mcasp.pjt. This project file
supports the following build configurations.

Optionally it can also be build using the CCSv4 using the project files located at

<ID>\packages\ti\pspiom\mcasp\build\OMAPL138\ccs4

IMPORTANT NOTE:

All build configurations require environment variable
%EDMA3LLD_BIOS5_INSTALLDIR% to be defined. This variable must point to
“<EDMA3_INSTALL_DIR>\packages”.

Debug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL138” to build library for OMAPL138 soc.

 Defines “-DMcasp_EDMA_ENABLE” to enable EDMA3 support in Mcasp driver.
It also contains “-i%EDMA3LLD_BIOS5_INSTALLDIR%” to find EDMA3 header
files.

iDebug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL138” to build library for OMAPL138 soc.

 Defines “-DMcasp_EDMA_ENABLE” to enable EDMA3 support in Mcasp driver.
It also contains “-i%EDMA3LLD_BIOS5_INSTALLDIR%” to find EDMA3 header
files.

Page 85 of 145

OMAPL137 BIOS PSP User Guide

 Defines “Mcasp_DEBUGPRINT_ENABLE to enable Mcasp driver to LOG debug
messages.

Release:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL138” to build library for OMAPL138 soc.

 Defines “-DMcasp_EDMA_ENABLE” to enable EDMA3 support in Mcasp driver.
It also contains “-i%EDMA3LLD_BIOS5_INSTALLDIR%” to find EDMA3 header
files.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

iRelease:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL138” to build library for OMAPL138 soc.

 Defines “-DMcasp_EDMA_ENABLE” to enable EDMA3 support in Mcasp driver.
It also contains “-i%EDMA3LLD_BIOS5_INSTALLDIR%” to find EDMA3 header
files.

 Defines “Mcasp_DEBUGPRINT_ENABLE to enable Mcasp driver to LOG debug
messages.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

9.2.2.1 Required and Optional Pre-defined symbols

The Mcasp library must be built with a soc specific pre-defined symbol.

“-DCHIP_OMAPL138” is used above to build for EVM6747. Internally this define is
used to select a soc specific header file (soc_OMAPL138.h). This header file
contains information such as base addresses of mcasp devices, their event
numbers, etc.

The Mcasp library can also be built with these optional pre-defined symbols.

Use -DPSP_DISABLE_INPUT_PARAMETER_CHECK when building library to turn
OFF parameter checking. This symbol is defined for Release and iRelease profiles
by default in the CCS 3.3 pjts provided.

Use -DNDEBUG when building library to turn off runtime asserts. This symbol is
defined for Release and iRelease profiles by default in the CCS 3.3 pjts provided.

Use –DMcasp_LOOPJOB_ENABLED when the loop job buffer support needs to be
enabled. If this support is not enabled, the Mcbsp driver works in non loop job
enabled mode

9.3 Features
This section details the features of Mcasp and how to use them in detail.

9.3.1 Multi-Instance

The Mcasp driver can operate on all the instances of Mcasp on the EVM6747.
Different instances may be specified during driver creation time, and instances 0
through 2 with corresponding device IDs 0 through 2 are supported, respectively.

Page 86 of 145

OMAPL137 BIOS PSP User Guide

These instances can operate simultaneously with configurations supported by the
Mcasp driver. Mcasp instances are created as follows:

1. Static creation – static creation is done in the “tcf” file of the
application; this creation happens at build time. The UDEV module
(UDEV.create) is used during static configuration. An instance of the
UDEV module at static configuration time corresponds to creating and
initializing an MCASP instance

2. Dynamic creation – Dynamic creation of an Mcasp instance is done in
the application source files by calling DEV_createDevice(); this
creation happens at runtime.

UDEV.create and DEV_createDevice allow user to specify the following:

 iomFxns: Pointer to IOM function table. Mcasp requires this field to be
Mcasp_IOMFXNS.

 initFxn: MCASP requires that the user call Mcasp_init() as part of this initFxn.
Users can also directly hook in Mcasp_init().

 device parameters: Mcasp requires the user to pass an Mcasp_Params struct.
This struct must exist in the application source files and it must be initialized
very early as part of driver specific initFxn.

 deviceId to identify the Mcasp peripheral.

For more information on configuring UDEV and Mcasp, please refer to the Audio
sample application (included with this driver release), and the DSP/BIOS API
Reference (spru403o.pdf, included in your DSP/BIOS installation).

9.3.2 Each Instance as Transmitter and / or receiver

Mcasp driver can be simultaneously operated as a transmitter and or receiver. This
could be achieved by creating an SIO Channel as an INPUT channel and creating
another SIO Channel as an OUTPUT channel. The type of Channel is specified while
creating the channel (using SIO_create ()specify “IOM_OUTPUT” or
“IOM_INPUT”).

The key configuration would be to specify if the transmission section and reception
sections clocks are synchronous or not. This is specified by Mcasp_HwSetupData.
clk.clkSetupHiClk by clearing the BIT 6 or setting the bit for asynchronous mode.

9.3.3 Supported Data Formats

Mcasp driver expects the data (samples) to be arranged in a specific format when
requesting for an IO transfer. These formats are explained under scenario of using 1
serializer and 2 or more serializers. Some of the multi-channel DACs (such as
WM8746) expects the samples for all the channels to be received over single
serializers. To support these DACs, Mcasp provides support for couple of more data
formats. The required buffer format could be configured at driver creation time. The
sections below capture the details of supported data formats.

Page 87 of 145

OMAPL137 BIOS PSP User Guide

McASP Mode Single Serializer Multiple Serializer

Burst Mode /

DSP Mode

Interleaved Data Format Non-interleaved data format

TDM 1 Slot Interleaved Data Format Non-interleaved data format

Multi-Slots TDM
Interleaved Data Format

Non-interleaveddata format

Non-interleaved data format

Semi-interleaved data format

DIT Interleaved Data Format Non-interleaved data format

9.3.3.1 Interleave Data Format (Burst Mode / 1 Slot TDM mode / Multi-Slots TFM / DIT mode)

When configured as interleaved format, it is expected that McASP is configured to
use 1 serializer. The expected data format is as depicted below.

[<Slot1-Sample1>, <Slot1-Sample2>…<Slot1-SampleN>]

The size (number of bytes) that would be required to specify during an IO request is
computed using the formula size = <word width>*<number of samples N>. The
sample application that came with this package demonstrates the use of this data
format.File audioSample_io.c implements the functions which configure McASP to use
this buffer format.

The key configurations are

 Mcasp_ChanParams.noOfChannels = 0x00

 Mcasp_ChanParams.noOfSerRequested = 0x01

 Mcasp_ChanParams.indexOfSersRequested[0] = SERIALIZER_0

 The size of the IO request is computed as <No of Bytes per Sample> * <
No of Samples >. This value should be given as a size parameter of
SIO_submit ()

 Idle Time9.4 data pattern length computation. Minimum length should be
<word width in bytes> or an integral multiple of computed value. While
allocating buffer, allocate <computed value> * <no of slots enabled>.

9.3.3.2 Non-Interleaved Data Format (Burst Mode / 1 Slot TDM mode / Multi-Slots TDM / DIT mode)

When configured as non-interleaved format, it is expected that PSP driver is
configured to use multiple serializers. The expected data format is as depicted below.
When configured to use multiple serializers, the samples are expected to be
contiguous for a serializer, as depicted below. The assumption here is no of
serializers is 2 and no of samples is N

[<Seriliazer1-Sample1>, <Seriliazer1-Sample2>…<Seriliazer1-SampleN>,

 <Seriliazer2-Sample1>, <Seriliazer2-Sample2>, <Seriliazer2-SampleN>,

 <Seriliazer3-Sample1>, <Seriliazer3-Sample2>…<Seriliazer3-SampleN>]

The key configurations are

 Mcasp_ChanParams.noOfChannels = 0x00

 Mcasp_ChanParams.noOfSerRequested = 0x03

 Mcasp_ChanParams.indexOfSersRequested[0] = SERIALIZER_0

 Mcasp_ChanParams.indexOfSersRequested[1] = SERIALIZER_6

Page 88 of 145

OMAPL137 BIOS PSP User Guide

 Mcasp_ChanParams.indexOfSersRequested[2] = SERIALIZER_8

 The size of the IO request is computed as <No of Bytes per Sample> * <
No of Samples per Serializer>. This value should be given as a size
parameter of SIO_submit ()

 Idle Time9.4 data pattern length computation. Minimum length should be
<word width in bytes> or an integral multiple of computed value. While
allocating the buffer allocate computed value * no of serializers
enabled.

9.3.3.3 Non-Interleaved Data Format (Multiple Slots Single serializer)

When configured to use multiple slots, one serializer and non-interleaved format. The
samples are expected to be contiguous for a slot, as depicted below. The assumption
here is no of slots is 2 and no of samples is N

[<Slot1-Sample1>, <Slot1-Sample2>…<Slot1-SampleN>,

 <Slot2-Sample1>, <Slot2-Sample2>, <Slot2-SampleN>]

i.e. The samples of Slot1 are contiguous followed by contiguous samples of Slot 2

The key configurations are

 Mcasp_ChanParams.noOfChannels = 0x00

 Mcasp_ChanParams.noOfSerRequested = 0x01

 The size of the IO request is computed as <No of Bytes per Sample> * <
No of Samples per Slot>. This value should be given as a size parameter
of SIO_submit ()

 Idle Time9.4 data pattern length computation. Minimum length should be
<number of slots enabled> * <word width in bytes> or an integral
multiple of computed value. While allocating the buffer, allocate <compute
value> * <no of slots>

Consider as an example where the no of slots are 3 and no of samples per slot is N

[<Slot1-Sample1>, <Slot1-Sample2>…<Slot1-SampleN>,

 <Slot2-Sample1>, <Slot2-Sample2>, <Slot2-SampleN>,

 <Slot3-Sample1>, <Slot3-Sample2>…<Slot3-SampleN>]

9.3.3.4 Semi-Interleaved Data Format (Multiple Slots Multiple serializer)

When configured to use multi-slots with multi-serializer, the sample for all serializer
for a give slot is contiguous, further the samples for all slots are interleaved. The
following representation specifies the expected data format. The assumption in this
example is we have enabled 2 serializer and two slots in each serializer.

[<Slot1-Sample1-Serializer1>, <Slot1-Sample1-Serializer2>,

 <Slot2-Sample2-Serializer1>, <Slot2-Sample2-Serializer2>,…

 <Slot1-SampleN-Serializer1>, <Slot2-SampleN-Serializer2>]

The key configurations are

 Mcasp_ChanParams.noOfChannels = 0x00

 Mcasp_ChanParams.noOfSerRequested = 0x02

 The size of the IO request is computed as <No of Bytes per Sample> * <
No of Samples per Slot>. This value should be given as a size parameter
of SIO_submit ()

Page 89 of 145

OMAPL137 BIOS PSP User Guide

 Idle Time9.4 data pattern length computation. Minimum length should be
<number of slots enabled> * <word width in bytes> or an integral
multiple of computed value. While allocating memory for the loopJobBuffer
allocate the computed size * no of serializers enabled.

9.3.4 Operational Modes (multi-slot TDM, I2S, DSP and DIT (S/PDIF)

9.3.4.1 Multi-Slot TDM

To configure Mcasp to operate with multi-slot, use the
Mcasp_HwSetupData.tx/rx.frSyncCtl, this variable represents McASPs
AFRCTL/AFXCTL. Refer section 9.3.3 for details on the supported data format. The
sample application (audioSample_io.c) file demonstrates the required configurations.

9.3.4.2 I2S

To configure Mcasp to operate in I2S format, use the
Mcasp_HwSetupData.tx/rx.frSyncCtl and Mcasp_HwSetupData.tx/rx.xfmt. This
variable represents McASPs AFRCTL/AFXCTL and XFMT / RFMT registers. Please refer
to sample application (audioSample_io.c) for the required configurations.

9.3.4.3 DSP

To configure Mcasp to operate in DSP format, use the
Mcasp_HwSetupData.tx/rx.frSyncCtl the fields RMOD/XMOD should be 0 and FRWID
/ FXWID should be 0. This variable represents McASPs AFRCTL/AFXCTL. Refer
section 9.3.3 for details on the supported data format.

The initialization time configurable parameter noOfChannels could be used to specify
the no of channels that 32 bit is split into. E.g if 32 bit is to be interpreted as 2 16 bit
samples, the noOfChannels should be set to 2.

9.3.4.4 DIT (S/PDIF)

To change the User Bits and Channel Status Bits that would be embedded by the
S/PDIF SIO, applications are expected to give the following parameters

 Mcasp_PktAddrPayload.writeDitParams = TRUE;

 Mcasp_PktAddrPayload.chStat = Address of structure of type
Mcasp_ChStatusRam.

 Mcasp_PktAddrPayload.userData = Address of structure of type
Mcasp_UserDataRam.

Driver would update the User Bits and Channel Status bits immediately. Applications
using the driver are in complete control change/update of User Bits and Channel
Status bits.

9.4 IDLE Time Data Patterns
IDLE Time in the context of Mcasp could be better explained under the CREATE Time
and Run Time. The sections below explain the behavior of Clock, Frame Sync and
Data signals.

9.4.1 Create Time

On successful creations of SIO instances, the Mcasp driver starts generating the
clock, Frame Sync and data (if configured as source / if configured as sink Mcasp
expects these signals). The data that would be sent out at this point can be
configured using Mcasp_ChanParams.userLoopJobBuffer and Mcasp_ChanParams
.userLoopJobLength. Optionally this could be set NULL and 0x0 respectively, the
driver uses driver’s internal buffers and length of these NULL buffers is 4 bytes.

Page 90 of 145

OMAPL137 BIOS PSP User Guide

9.4.2 Run Time

If the applications could not meet the real time needs of transmission/reception of
data, Mcasp driver steps in to consume to received the data or transmit a know data
pattern.

Mcasp driver could be configured to send out a know pattern when ever the above
situation arises using Mcasp_ChanParams.userLoopJobBuffer and
McaspChanParams .userLoopJobLength. Optionally this could be set NULL and 0x0
respectively, the Mcasp driver uses driver’s internal buffers and length of these NULL
buffers is 4 bytes.

9.4.3 IDLE Time buffer size

This IDLE Time data patterns could possibly have un-intended effects, if used in-
correctly. It is recommended that following method is used to calculate the size of
the IDLE time buffers.

Size of Idle Time buffers = <width of slot in bytes> * <no of serializer enabled> *
<no of slots enabled>

If the application does not supply the idle time buffers, the Mcasp driver would use
its internal buffer of length 4 bytes when operating in TDM mode and 8 bytes when
operating in DIT mode.

CAUTION: If the computed size does not match the logical end of slots, the
channels could be swapped. A quick way to check would be to monitor the frame
sync and data line/s on scope and send out unique pattern in each slot of the idle
time buffer.

9.5 Explicit control of IO PINS
Mcasp driver provide explicit control on the directions of the following Mcasp pins.

Signal Pin Description

AFSR Frame Sync signal for reception. Direction should be explicitly set
when channel opened for READ

AHCLKR High Clock signal for reception. Direction should be explicitly set
when channel opened for READ

ACLKR Bit Clock signal for reception. Direction should be explicitly set
when channel opened for READ

AFSX Frame Sync signal for reception. Direction should be explicitly set
when channel opened for WRITE

AHCLKX High Clock signal for reception. Direction should be explicitly set
when channel opened for WRITE

ACLKX Bit Clock signal for reception. Direction should be explicitly set
when channel opened for WRITE

There could be scenarios where the applications would require the Mcasp to be
configured as MASTER (one generating the Frame Sync, Bit Clock and High Clock)
and yet not drive these pins. This feature allows achieving this.

Use Mcasp_HwSetup.glb.pdir to set the directions. This variable maps to PDIR
register of Mcasp.

Page 91 of 145

OMAPL137 BIOS PSP User Guide

9.6 Clocking McASP
The Mcasp peripheral requires two clocks to operate. The peripheral clock used to
drive the peripherals functional, the second clock (also called as auxiliary clock /
internal clock source) used to generate the high clock and the bit clocks for the serial
data-bit streams.

Alternatively, Mcasp could be configured to use an external clock source to derive the
bit clock for the serial data-bit streams. This external clock would be received via the
High Clock Pin. This setup is referred to as External Clock in this document.

9.6.1 Internal Clock

The Auxiliary clock passes thorough a two stage divider to generate bit clock for the
serial data stream. Please refer the data manual for Mcasp , section 2.2.1 Transmit
Clock and 2.2.2 Receive Clock. The configurations that would be required are
explained in the context of the example below.

Assumption: Mcasp is configured as output channel and would require to output the
High Clock (used as the system clock for the DACs), Bit clock and the frame sync.
For these setup following are the key configurations

 Mcasp_HwSetup.glb.pdir = 0x1C000000; With this we are selecting AFSX,
AHCLKX, CLKX as out pins and AFSR, AHCLKR, CLKR as input pins.

 Mcasp_HwSetupData.clk.clkSetupHiClk = 0x000080XX; With this we are
configuring Mcasp high clock to be sourced from internal clock (auxiliary clock
divided by the divisor specified by bits 0-11 of this register, is interpreted as
High Clock)

 Mcasp_HwSetupData.clk.clkSetupClk = 0x0000002X; With this we are
configuring Mcasp to source bit clock from the output of High clock (High
Clock divided by the divisor specified by divisor specified by the bits 0-4 of
this value)

 If it’s desired that the High Clock, Frame Sync and Bit Clock signal should not
be outputted, change the pin functionality as an input pin.

9.6.2 External Clock

9.6.2.1 External Frame Sync & External Bit Clock

Mcasp could be programmed to source the Frame Sync (for both reception and
transmission) from an external source such as DAC/ADC. The condition being that
the Bit Clock is also sourced from the same entity, failing which the behavior is un-
predictable (i.e. we could see clock failure condition). To configure the Mcasp to
source Bit clock and Frame Sync from an external entity following are the important
configurations.

Assuming that Mcasp is configured to transmit data and High Clock is ignored.(i.e.
External entity is generating Frame Sync and Bit clocks only)

 Mcasp_HwSetup.glb.pdir = 0x00000000; With this we are selecting AFSX,
AHCLKX, CLKX as input pins and AFSR, AHCLKR, CLKR could be ignored if
the receive section of McASP is un-used.

 Mcasp_HwSetupData.clk.clkSetupHiClk = 0x00000000; With this we are
configuring Mcasp Bit clock to be sourced from ACLKX Pin. (Typically, in this
scenario we would not want to divide bit clock, we could out of Sync and not
meet the needs of the external device)

Page 92 of 145

OMAPL137 BIOS PSP User Guide

 Mcasp_HwSetupData.clk.clkSetupClk = 0xXXXXXXXX; Since we are sourcing
the Bit clock from the external AHCLK Pin, this register will not have any
effect on the Bit Clock and Frame Sync.

9.6.2.2 External High Clock

Mcasp could be programmed to source the High Clock from an external entity.
Typically if the High Clock is sourced from an external entity, the Bit Clock and
Frame Sync would be generated the McASP. The Bit Clock and the Frame Sync in
turn could feed into a serials data consumption unit such as a DAC. The
configurations mentioned below are the important configurations that are to
configured to use the external High Clock

Assuming that Mcasp is configured to transmit data and High Clock is sourced from
an external entity.

 Mcasp_HwSetup.glb.pdir = 0x14000000; With this we are selecting
AHCLKX as input pins, AFSX / ACLKX as output pins and AFSR, AHCLKR,
CLKR could be ignored if the receive section of McASP is un-used.

 Mcasp_HwSetupData.clk.clkSetupHiClk = 0x000000XX; With this we are
configuring Mcasp high clock to be sourced from AHCLKX Pin (The output of
clock divided by the divisor specified by bits 0-11 of this register, is
interpreted as High Clock)

 Mcasp_HwSetupData.clk.clkSetupClk = 0x0000002X; With this we are
configuring Mcasp to source bit clock from the output of High clock (High
Clock divided by the divisor specified by divisor specified by the bits 0-4 of
this value)

9.7 Clock Configuration (EVM6747)
Mcasp drivers sample application that came with this release is configured to use
external Clock. The configurations are as explained in section 9.6.1. The sample
application demonstrates the audio data capturing through the line in and transmits
the same data through the line out Pin.

9.8 Configurations
Following tables document some of the configurable parameter of Mcasp. Please
refer to Mcasp.h for complete configurations and explanations.

9.8.1 Mcasp_Params

This structure defines the device configurations, expected to supply while creating
the driver. This is provided when driver channels are created (e.g. SIO_create).

Members Description

hwiNumber
Maps HWI event number to the ECM group.
Please note that no validation is done by the
driver.

enablecache Specifies if the applications supplied buffers
required to be FLUSHED/INVALIDATED.

isDataBufferPayloadStructure
Specifies to use to use User Bits, Channel
Status bit and flag update DIT params of the
IO request.

mcaspHwSetup Hardware configurations of McASP driver.

Page 93 of 145

OMAPL137 BIOS PSP User Guide

pscPwrmEnable Option to enable/disable the power
management features

9.8.2 Mcasp_HwSetup

Members Description

glb
Specifies the device configurations that are common for
both the reception and transmission section.

rx
Specifies the configurations that are specific to the
reception section.

tx
Specifies the configurations that are specific to the
transmission section.

emu Power down emulation mode control

9.8.3 Mcasp_HwSetupGbl

Members Description

pfunc
Kept for future use. Driver decides the functionality of
the McASP PINS.

pdir
Applications could decide the PIN directions of Frame
Sync, High Clock and Bit Clock for both reception and
transmission. The directions are determined the driver.

ctl Kept for future use. Recommended to be 0x0 for now.

ditctl Kept for future use. Recommended to be 0x0 for now.

9.8.4 Mcasp_HwSetupData

This structure defines the channel specific configurations for reception section and
transmission section.

Members Description

mask
The driver applies the value supplied by this register to
RMASK/XMASK

fmt
The driver applies the value supplied by this register to
RFMT/XFMT

frSyncCtl
The driver applies the value supplied by this register to
AFSRCTL/AFSXCTL

tdm
The driver applies the value supplied by this register to
RTDM/XTDM

intCtl
The driver applies the value supplied by this register to
RINTCTL /XINTCTL

stat
The driver applies the value supplied by this register to
RSTAT/XSTAT

Page 94 of 145

OMAPL137 BIOS PSP User Guide

evtCtl
The driver applies the value supplied by this register to
REVTCTL/XEVTCTL

clk
Configure the BIT clock, the High clock configuration and
Clock failure detection

9.8.5 Mcasp_HwSetupData

Members Description

clkSetupClk
The driver applies the value supplied by this register to
ACLKRCTL/ACLKXCTL

clkSetupHiClk
The driver applies the value supplied by this register to
AHCLKRCTL/AHCLKXCTL

clkChk
The driver applies the value supplied by this register to
RCLKCHK/XCLKCHK

9.8.6 Mcasp_ChanParams

Applications could use this structure to configure the channel specific configurations.

Members Description

noOfSerRequested The number of serializers required to use by the
channels.

indexOfSersRequested Index of the serializer that would be required.
mcaspSetup The hardware configurations required for the channel

specifically. Please refer section Mcasp_HwSetupData.

channelMode To operate in DIT/TDM mode
wordWidth Required word width in the slots.
isDmaDriven Whether the channel is DMA driven.
userLoopJobBuffer Buffer to be transferred when the loop job is running.
userLoopJobLength Number of bytes of the userloopjob buffer for each

serializer.
edmaHandle Handle to PSP EDMA LLD driver
gblCbk callback required when global error occurs and this

must be callable from the ISR context
noOfChannels No of channels of data to be transmitted. Please refer

section 9.3.4.3 for details.
dataFormat Buffer format for the audio data to be used by the

driver.
EnableHwFifo Flag to indicate if the Hardware FIFO is to be enabled

for this channel.
isDataPacked flag to indicate if the buffer data needs to be packed,

i.e. the EDMA needs to be programmed for the exact

Page 95 of 145

OMAPL137 BIOS PSP User Guide

slot width or a rounded width of 32,16, or 8 Bit is to
be used.

9.8.7 Mcasp_PktAddrPayload

Application are expected to pass pointer to this structure in SIO_submit () function
calls. It is recommends that these packets are allocated on the heap, since the driver
would return a pointer to this structure when the IO request is
completed/flushed/aborted.

Members Description

chStat
Applicable to DIT mode, should point to a channel status
bits associated with S/PDIF stream.

userData
Applicable to DIT mode, should point to a user bits
associated with S/PDIF stream.

writeDitParams
Flag to indicate if the user bits and channel status bits is
to be updated/re-configured with the supplied values.

addr
Pointer to data that requires to be transmitted. Please
refer section 9.3.3 for details on the supported data
formats.

9.9 IO Request Format
While creating the Mcasp device driver (either through TCF file statically or using the
API DEV_create) it’s required to configure as to how the data buffers would be
supplied by the application.

9.9.1 TDM Mode

Application could pass the address of the audio buffer to McASP via the SIO_write ()
API. On completion of transmission/reception the application supplied callback would
be called with address of the audio buffer as the parameter. The behavior described
above could be configured using the create time configuration
Mcasp_params.isDataBufferPayloadStructure = FALSE

If Mcasp_Params.isDataBufferPayloadStructure is set to TRUE the audio data is
expected to be encapsulated in structure Mcasp_PktAddrPayload. The member
writeDitParams should be set to FALSE.

9.9.2 DIT Mode

Applications could use the structure Mcasp_PktAddrPayload to pass a pointer to the
data buffer and specify User Bits / Channel Status Bits. In DIT mode, this could be
specified with configuration Mcasp_Params.isDataBufferPayloadStructure =
TRUE, the driver would interpret the data buffer passed in function call SIO_submit
() as a pointer to structure Mcasp_PktAddrPayload and all its members are
populated.

9.10 CACHE Control
Mcasp could be configured to FLUSH/INVALIADTE the application supplied buffers
while creating the drivers with configuration parameter Mcasp_Params.enablecache
= TRUE/FALSE. When set to TRUE for every request the data buffer is
FLUSHED/INVALIDATED. One could improve the latency of SIO_submit () call by
providing pre-flushed/pre-invalidate data and disabling the cache option.

Page 96 of 145

OMAPL137 BIOS PSP User Guide

9.11 Control Commands
Following table describes some of important the control commands, for a
comprehensive list please refer the IOCTL defined in Mcasp.h.

Command Arguments Description

Mcasp_IOCTL_CNTRL
_AMUTE Uint32 *

Writes the supplied Uint32 value
into AMUTE register of McASP
peripheral.

Mcasp_IOCTL_STOP_
PORT None

Stops the transmission/reception.
The current IO request in the QUE
is completed.

Mcasp_ICOTL_START
_PORT None

Re-Starts the transmission /
reception. When there are no
pending IO requests, the clocks are
stopped and re-started.

Mcasp_IOCTL_CTRL_
MODIFY_LOOPJOB

Mcasp_ChanPar
ams *

Used to modify the existing know
data pattern. Parameters
userLoopJobBuffer and
userLoopJobLength are used.

Mcasp_IOCTL_CTRL_
MUTE_ON None

Applicable to Transmit channel
only. The current IO request is
completed and MUTE Data pattern is
sent out

Mcasp_
IOCTL_CTRL_MUTE_O
FF

None

Applicable to Transmit channel only
which is muted. Configures to play
the next pending IO request, else
configures to play the
LoopJobBuffers.

Mcasp_IOCTL_PAUSE None Pause the Mcasp channel operations

Mcasp_IOCTL_RESUM
E None Resume the Mcasp channel operations

Mcasp_IOCTL_CHAN_
RESET

None

De-activates the
transmission/reception and returns
all the queued request with status
of the IO request set as
FLUSHED/ABORTED

Mcasp_IOCTL_CNTRL
_SET_FORMAT_CHAN

Mcasp_HwSetup
Data *

Re-Configures the channel with new
configurations specified. Takes no
effect on the pending / current IO
request.

Mcasp_IOCTL_CNTRL
_GET_FORMAT_CHAN

Mcasp_HwSetup
Data *

Return the current channel
configurations

Mcasp_IOCTL_DEVIC
E_RESET None Icotl command to reset the Mcasp

device

Mcasp_
IOCTL_QUERY_MUTE

Uint32 * Ioctl command to query the current
settings of the AMUTE register.

Mcasp_
IOCTL_SET_DIT_MOD
E

Uint32 * Icotl command to set the DIT mode
of operation

Page 97 of 145

OMAPL137 BIOS PSP User Guide

Mcasp_IOCTL_CHAN_
TIMEDOUT

None Ioctl command to handle the channel
timeout condition.

Mcasp_IOCTL_ABORT None

This IOCTL aborts all the pending
request of the channel and stops
the state machine. The EDMA
transfer is also stopped.

Mcasp_IOCTL_SET_D
LB_MODE None

This command is used to set the
McASP in to the loopback mode.

Mcasp_IOCTL_CNTRL
_SET_GBL_REGS Mcasp_HwSetup

*
Command to set the global control
registers

Mcasp_IOCTL_SET_S
AMPLE_RATE

Uint32 * Command to modify the sample rate.

Mcasp_IOCTL_GET_D
EVINFO

Mcasp_AudioDe
vData *

Command to retrieve the device
specific information.

9.12 Use of PSP driver through SIO APIs
Following sections explain the use of parameters of SIO calls in the context of Mcasp
driver. Note that no effort is made to document the use of SIO calls; any Mcasp
specific requirements are covered below.

9.12.1 SIO_create

Parameter
Number

Parameter Specifics to PSP

1 Device Name string

Unique identifier used to identify this driver.
Please note the name should be same as
specified while creating the driver. (Either
through TCF or DEV_createDevice)

2 IO Type
Should be “IOM_INPUT” when McASP requires
to received data and “IOM_OUTPUT” when
McASP requires to transmit

3 bufSize Stream buffer size

4 SIO_Attrs * Parameters required for the creation of the SIO
(e.g. channel parameters)

9.12.2 SIO_ctrl

Parameter
Number

Parameter Specifics to PSP

1 SIO_Handle Handle returned by SIO_create

2 Command IOCTL command defined by Mcasp driver

3 Arguments Misc arguments if required by the command

Page 98 of 145

OMAPL137 BIOS PSP User Guide

9.12.3 SIO_issue

Parameter
Number

Parameter Specifics to PSP

1 channel Handle Handle returned by SIO_create

2 Pointer to buffer
Should be pointer to variable of type
Mcasp_PktAddrPayload OR Uint32 * that
holds the audio data.

3 arg User argument

4 Size Size of the transaction

9.12.4 SIO_reclaim

Parameter
Number

Parameter Specifics to PSP

1 channel Handle Handle returned by SIO_create

2 Pointer to buffer
Should be pointer to variable of type
Mcasp_PktAddrPayload OR Uint32 * that
holds the audio data.

3 Pointer to arg User argument

9.13 Timeline of Frame Sync, High Clock and or Bit Clock generation
The behavior of Mcasp driver is better explained under these two sections.

9.13.1 Mcasp sourcing Frame Sync, High clock and or Bit Clock

On successful creation of Mcasp device driver, the Frame Sync, Bit Clock and High
Clock are started. In EVM designs such as OMAPL138, the High Clock is fed into On
board DAC/ADC (Such as AIC31). Applications are expected to create the driver first,
(after recommended delay) applications could program the DACs.

9.13.2 Mcasp sinking Frame Sync, High clock and or Bit Clock

When Mcasp is sinking the Frame Sync, Bit Clock and or High Clock, applications
should ensure that clocks are being fed into Mcasp before creating the device driver.
Failing which the Mcasp will not pull transmit/reception section out of re-set.
Effectively the driver creation would fail.

9.14 Porting Guide
This section describes the major changes that would be required to port the Mcasp
driver from DS/BIOS™ operating system to a different operating system.

The McASP Device Driver is based upon the DSP BIOS IOM interface. The driver is
tightly coupled with the DSP BIOS operating system

Page 99 of 145

OMAPL137 BIOS PSP User Guide

9.15 Sources that need re-targeting

9.15.1 ti/pspiom/cslr/soc_OMAPL138.h (soc specific header file):

This file contains target (SoC) specific definitions. In most cases, changing the values
for the SoC specific details done here should suffice. However, if there are major
changes in the hardware instance then the driver file may be needed to change.

9.16 EDMA3 Dependency
Mcasp driver relies on PSP EDMA3 driver to move data from/to application buffers to
peripheral; typically PSP EDMA3 driver is PSP deliverable unless mentioned
otherwise. Please refer to the release notes that came with this release. Please
ensure that current PSP release is compliant with version of EDMA3 driver being
used.

9.16.1 Used Paramset of EDMA 3

Mcasp driver uses TWO paramsets of EDMA3; if there are no paramsets are available
the Mcasp driver creation would fail. These paramsets are used through the life time
of PSP driver.

9.17 How to support “NEW” data format
If a custom data format is to be supported, one would require to follow these steps.

 Add an enumeration in Mcasp_BufferFormat defined in Mcasp.h

 Update the function mcaspValidateBufferConfig() implemented in mcasp.c
to recognize this new data format.

 Update the function implemented mcaspGetIndicesSyncType() in
mcasp_edma.c to provide the EDMA 3 indices required to configure EDMA3

9.18 Known Issues
Please refer to the top level release notes that came with this release.

9.19 Limitations
Please refer to the top level release notes that came with this release.

9.20 Mcasp DIT Sample application

9.20.1.1 Description:

This sample demonstrates the use of the Mcasp driver in DIT mode. Mcasp driver
supports only DMA mode of operation. Also note that the Mcasp driver application
also supports only transmission in DIT mode.

The Mcasp driver along with the required component modules are configured
statically in mcaspDitSample.tcf file. The required task for the audio play and the
memory for the heap are also created here.

The mcaspDitSample.tcf file contains the remaining BIOS configuration like the
configuration of the event combiner etc. This helps to map the Mcasp events to the
CPU interrupts.

The Audio_echo_Task () task exercises the Mcasp driver. It uses Stream APIS to
create mcasp driver channels and also to perform the IO operations.

9.20.1.2 Build:

 This sample can be built using the CCS3 or CCS4 interface.

Page 100 of 145

OMAPL137 BIOS PSP User Guide

IMPORTANT NOTE: The mcaspDitSample project contains the references to
%EDMA3LLD_BIOS5_INSTALLDIR% environment variable and links with edma3
libraries. This is required because audio driver by default requires that the EDMA be
present.

There is also facility for users to compile the project using the command line. The file
package.bld takes care of the necessary steps to compile the project from command
line.

Please refer to the “Integration Guide” section for more details about building the
project.

9.20.1.3 Setup:

You need an “audio board” to be connected to the evm6747. The DIT OUT port
should be connected to the IN port of the “Flying cow” (a DIT data receiver) device.
The OUT port of the “Flying cow” should be connected to the Headphones
(speakers).

9.20.1.4 Output:

When the sample is executed, a sine tone should be heard from the speaker
continuously.

9.21 McASP Sample application

9.21.1.1 Description:

This sample demonstrates the use of the McASP driver in EVM to EVM communication
mode. Mcasp driver supports only DMA mode of operation.

The Mcasp sample application has two projects

1. Master mode project

2. Slave mode project.

Master mode sample application is used to configure one of the EVM as master i.e. it
supplies all the required clocks, while the slave mode sample application takes the
clocks from an external device.

The driver along with the required component modules are configured statically in
mcaspSample.tcf file. The required task for the test application and the memory for
the heap are also created here.

The mcaspSample.tcf file contains the remaining BIOS configuration like the
configuration of the event combiner etc. This helps to map the Mcasp events to the
CPU interrupts.

The “Mcasp_echo_task() task exercises the Mcasp driver. It uses Stream APIS to
create mcasp driver channels and also to perform the IO operations.

9.21.1.2 Build:

 This sample can be built using the CCS3 or the CCS4 interface.

IMPORTANT NOTE: The sample application project contains the references to
%EDMA3LLD_BIOS5_INSTALLDIR% environment variable and links with edma3
libraries. This is required because driver by default requires that the EDMA be
present.

Please refer to the “Integration Guide” section for more details about building the
project.

Page 101 of 145

OMAPL137 BIOS PSP User Guide

9.21.1.3 Setup:

You need to connect two EVMs with the McASP instance 1 on one EVM connected to
the McASP instance 1 on the other evm. The other settings are as described below.

1. The Multi channel board is connected on each of the EVMs and the test
points are connected as given below..

2. The connections for the EVM to EVM are as follows. Refer to the
schematics for the PIN number references.

Master Slave

ACLKX1 ACLKR1

AFSX1 AFSR1

AXR1[5] AXR1[5]

GND GND

9.21.1.4 Output:

The sample on the slave side is loaded and executed first. Next the sample
application on the master side is loaded and executed. The output log will indicate if
the transmission has passed and also if the reception and data compare is
successful.

Page 102 of 145

OMAPL137 BIOS PSP User Guide

10 Audio driver

10.1 Introduction
This document is the reference guide for the Audio device driver which explains the
features and tips to use them.

DSP/BIOS applications use the driver typically through APIs provided by SIO layer,
to transmit and receive serial data. The following sections describe in detail,
procedures to use this driver, configure among others… It is recommended to go
through the sample application to get a feel of initializing and using the Audio driver

10.1.1 Key Features

 Multi-instance support and re-entrant driver(10.3.1)

 Each instance can be used to configure a complete receive and transmit
section of an audio configuration consisting of an audio device and multiple
audio codecs (0).

10.2 Installation
The Audio device driver is a part of PSP product for OMAPL137 and would be installed
as part of product installation.

10.2.1 Audio Component folder

On installation of PSP package for OMAPL137, the Audio driver can be found at
<ID>\ ti\pspiom\platforms\evmOMAPL137\audio

As show above the audio folder contains sub-folder, contents of which are described
below.

 audio - The audio folder is the place holder for the entire Audio driver. This
folder contains Audio.h which is the header file included by the application.

 build – contains CCS 3.3 / CCS 4 project file to build Audio library.

 docs – Contains doxygen generated API reference.

 lib – Contains Audio libraries

 src – Contains Audio driver’s source code.

10.2.2 Build Options

The Audio library can be built using the CCS v3.3 project file located at
<ID>\packages\ti\pspiom\platforms\evmOMAPL137\audio\build\ccs3\audio.pjt. This
project file supports the following build configurations.

It can also be compiled using the CCS v4 project files located at
<ID>\packages\ti\pspiom\platforms\evmOMAPL137\audio\build\ccs4\

Page 103 of 145

OMAPL137 BIOS PSP User Guide

Debug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

iDebug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

 Defines “Audio_DEBUGPRINT_ENABLE to enable Audio driver to LOG debug
messages.

Release:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

iRelease:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

 Defines “Audio_DEBUGPRINT_ENABLE to enable Audio driver to LOG debug
messages.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

10.2.2.1 Required and Optional Pre-defined symbols

The Audio library can also be built with these optional pre-defined symbols.

Use -DPSP_DISABLE_INPUT_PARAMETER_CHECK when building library to turn
OFF parameter checking. This symbol is defined for Release and iRelease profiles
by default in the CCS 3.3 pjts provided.

Use -DNDEBUG when building library to turn off runtime asserts. This symbol is
defined for Release and iRelease profiles by default in the CCS 3.3 pjts provided.

10.3 Features
This section details the features provided by audio driver and how to use them in
detail.

10.3.1 Multi-Instance

The Audio driver can operate on all the instances of Mcasp and audio codecs on the
EVMOMAPL137. Different instances may be specified during driver creation time, and
instances 0 through 2 with corresponding device IDs 0 through 2 are supported,
respectively.

These instances can operate simultaneously with configurations supported by the
Audio driver. Audio instances are created as follows:

1. Static creation – static creation is done in the “tcf” file of the
application; this creation happens at build time. The UDEV module
(UDEV.create) is used during static configuration. An instance of the
UDEV module at static configuration time corresponds to creating and
initializing an Audio instance

Page 104 of 145

OMAPL137 BIOS PSP User Guide

2. Dynamic creation – Dynamic creation of an Audio instance is done in
the application source files by calling DEV_createDevice(); this
creation happens at runtime.

UDEV.create and DEV_createDevice allow user to specify the following:

 iomFxns: Pointer to IOM function table. Audio requires this field to be
Audio_IOMFXNS.

 initFxn: Audio Interface requires that the user call Audio_init() as part of this
initFxn. Users can also directly hook in Audio_init().

 device parameters: Audio driver requires the user to pass an Audio_Params
struct. This struct must exist in the application source files and it must be
initialized very early as part of driver specific initFxn.

 deviceId to identify the Audio peripheral.

For more information on configuring UDEV and Audio, please refer to the Audio
sample application (included with this driver release), and the DSP/BIOS API
Reference (spru403o.pdf, included in your DSP/BIOS installation).

10.3.2 Each Instance as Transmitter and / or receiver

Audio driver can be simultaneously operated as a transmitter and or receiver. This
could be achieved by creaing an SIO Channel as an INPUT channel and creating
another SIO Channel as an OUTPUT channel. The type of Channel is specified while
creating the channel (using SIO_create ()specify “IOM_OUTPUT” or
“IOM_INPUT”). The configuration parameters are explained in the sections to follow.

10.4 Configurations
Following tables document some of the configurable parameter of Audio. Please refer
to Audio.h for complete configurations and explanations.

10.4.1 Audio_Params

This structure defines the device configurations, expected to supply while creating
the driver instance. This is provided when driver channels are created (e.g.
SIO_create).

Members Description

instNum Instance number of the driver.

adDevType Audio device to be used in the configuration
(Mcasp/Mcbsp)

adDevName Name of the audio device driver in the driver table

acNumCodecs Number of codecs in the current audio configuration

acDevname
Name of the audio codec device in the driver table

Apart from the instance parameters described above build options can also be added
or removed to add/remove features.e.g–DPSP_DISABLE_INPUT_PARAMETER_CHECK

10.4.2 Audio_ChannelConfig

Applications could use this structure to configure the channel specific configurations
required by the individual channels.

Members Description

Page 105 of 145

OMAPL137 BIOS PSP User Guide

chanParam Pointer to the channel structure needed by the audio device.
(This structure needs to be identified by the device in use in
the current configuration).

acChannelConfig The structure holding the audio codec driver’s channel
parameters.

10.5 Control Commands
Following table describes some of important the control commands, for a
comprehensive list please refer the IOCTL defined in Audio.h.

Command Arguments Description

Audio_IOCTL_SAMPL
E_RATE

Uint32 * Changes the sample rate for the
audio configurations.

10.6 Use of Audio driver through SIO APIs
Following sections explain the use of parameters of SIO calls in the context of Audio
driver. Note that no effort is made to document the use of SIO calls; any AudioPSP
specific requirements are covered below.

10.6.1 SIO_create

Parameter
Number

Parameter Specifics to Audio

1 Device Name string

Unique identifier used to identify this driver.
Please note the name should be same as
specified while creating the driver. (Either
through TCF or AIC31_createDevice ()

2 IO Type
Should be “IOM_INPUT” when Audio requires
to received data and “IOM_OUTPUT” when
Audio requires to create a transmit channel.

3 bufSize Stream buffer size

4 SIO_Attrs * Parameters required for the creation of the
SIO (e.g. channel parameters)

10.6.2 SIO_ctrl

Parameter
Number

Parameter Specifics to Audio

1 SIO_Handle Handle returned by SIO_create

2 Command IOCTL command defined by device driver to
which the command is intented.

3 Audio_ IoctlParam *

Pointer to the structure containing the
information about the device to which the
command is intended and also the extra
information required in case of certain IOCTL
commands.

Page 106 of 145

OMAPL137 BIOS PSP User Guide

10.6.3 Stream_issue

Parameter
Number

Parameter Specifics to Audio

1 Channel Handle Handle returned bySIO_create

2 Pointer to buffer Should be pointer to variable of type that
holds the data to be transmitted.

3 arg User argument

4 Size Size of the transaction

10.6.4 SIO_reclaim

Parameter
Number

Parameter Specifics Audio

1 channel Handle Handle returned by SIO_create

2 Pointer to buffer
Should be pointer to variable Uint32 * that
holds the audio data.

3 Pointer to arg User argument return

10.7 Sources that need re-targeting

10.7.1 ti/pspiom/cslr/soc_OMAPL137.h (soc specific header file):

This file contains target (SoC) specific definitions. In most cases, changing the values
for the of SoC specific details done here should suffice. However, if there are major
changes in the hardware instance then the driver file may be needed to change.

10.8 EDMA3 Dependency
The Audio driver does not depend on the EDMA3 LLD driver directly. But, the
underlying audio driver might be dependent on the EDMA driver.

10.9 Known Issues
Please refer to the top level release notes that came with this release.

10.10 Limitations
Please refer to the top level release notes that came with this release.

10.11 Audio Sample Application

10.11.1 Description:

This sample demonstrates the use of the Audio driver. This application configures the
Audio driver to communicate with the Mcasp driver and the Aic31 driver. The Aic31
driver uses the I2c driver. The flow is as follows:

Page 107 of 145

OMAPL137 BIOS PSP User Guide

All drivers used in this application are configured in audioSample.tci. The
corresponding init functions and global variables are located in
audioSample_instParams.c

The audioSample.tcf file contains the remaining BIOS configuration. The most
important lines in this file which the application may need to pull into his tcf file are
as follows.

bios.ECM.ENABLE = 1;

bios.HWI.instance("HWI_INT8").interruptSelectNumber = 0;

bios.HWI.instance("HWI_INT9").interruptSelectNumber = 1;

bios.HWI.instance("HWI_INT10").interruptSelectNumber = 2;

These lines configure the ECM module and map ECM events to CPU interrupts.

The main() function configures the PINMUX and uses the Psc module to enable the
peripherals.

The Audio_echo_Task () task is the work task that transfers buffers from SIO input
channel to SIO output channel.

10.11.1.1 Build:

 This sample can be built using

<ID>/packages/ti/pspiom/examples/evmOMAPL137/audio/build/ccs3/audioSample.p
jt

IMPORTANT NOTE: audioSample.pjt contains references to
%EDMA3LLD_BIOS5_INSTALLDIR% environment variable and links with edma3
libraries.

10.11.1.2 Setup:

You need to connect an audio cable from the Host PC audio output to Line IN of
evmOMAPL137. Then connect another audio cable from Line OUT of evmOMAPL137
to a speaker. Play music on the host PC while running the application. Please ensure
that the “Multi Channel Audio Board” is NOT plugged into the audio expansion slot of
the EVM.

Note: The Multi-channel Audio Board should not be plugged into the EVM while
running this sample application.

10.11.1.3 Output:

When the sample runs, you can hear the music from the speakers.

10.12 Dependencies
The audio sample application is dependent on the following drivers

 Audio interface.

 Mcasp driver.

 Aic31 codec driver.

 I2C driver.

10.12.1 Audio Interface

The audio interface provides a high level interface for the user to configure a audio
configuration consisting of one audio device and multiple audio codecs. An instance

Page 108 of 145

OMAPL137 BIOS PSP User Guide

of the Audio interface is used for any data exchange between the application and the
underlying audio device/driver .For further details on the usage of the audio interface
please refer to the Audio interface user guide and design documents.

10.12.2 McASP Driver

The McASP driver is used to transport audio data to and from the McASP peripheral.
The application submits the data read and write requests to the audio interface
driver, which in turn are submitted to the Mcasp driver. The McASP driver then
reads/writes data to/from the McASP peripheral. For further details on the usage of
the Mcasp device and interfaces, please refer to the Mcasp user guide and design
documents.

10.12.3 Aic31 Codec Driver

The Aic31 Codec control is interfaced to the SoC through the I2C. The codec can be
configured by the application through an I2C interface only. The Aic31 codec
converts the digital audio data from the McASP to the analog audio signal and vice
versa. Please note that the codec driver does not handle any data transfer request
from the application. It only handles the configuration of the audio codec as
requested by the audio interface (or application). The application payload (audio)
data is transferred to/from the codec is via McASP peripheral pins connected to the
codec and this transfer occurs without any explicit request from the application. For
further details on the usage of the Aic31 codec please refer to the Aic31 codec driver
user guide and design documents.

10.12.4 I2C Driver

The codec cannot be configured directly by the McASP driver. The Aic31 codec
control is interfaced to the SoC through an I2C interface. Hence the I2C driver is
required for configuring the codec driver. The codec driver internally uses the I2C
driver APIs to read and write to the codec registers. The application is expected to
initialize the I2 driver prior to using the codec driver. For further details on the usage
of the I2C please refer to the I2C user guide and design documents.

Page 109 of 145

OMAPL137 BIOS PSP User Guide

The block diagram below depicts the dependencies between the different drivers in
the sample application. The audio application interacts with the audio interface driver
through stream interface APIs. The audio interface driver internally interacts with the
McASP driver and Aic31 driver. The Aic31 driver internally uses the I2C driver to
configure the codec registers. The application needs to configure the drivers in the
required modes before creating the channels for the audio application.

Hardware

Aic31

AUDIO APPLICATION

Mcasp

Audio interface driver

Stream Interface

I2C

DSP-BIOS

Page 110 of 145

OMAPL137 BIOS PSP User Guide

11 AIC31 CODEC driver

11.1 Introduction
This document is the reference guide for the Aic31 device driver which explains the
features and tips to use them.

DSP/BIOS applications use the driver typically through APIs provided by SIO layer,
to configure transmit and receive sections. The following sections describe in detail,
procedures to use this driver and configure it. It is recommended to go through the
sample application to get familiar with initializing and using the Aic31 driver

11.1.1 Key Features

 Multi-instance support and re-entrant driver.

 Each instance can operate as a receiver and or transmitter.

 Interfaces to control the codec specific features like sample rate etc.

11.2 Installation
The Aic31 device driver is a part of PSP product for OMAPL137 and would be installed
as part of product installation.

11.2.1 Codec Component folder

On installation of PSP package for OMAPL137, the codec driver can be found at
<ID>\ ti\pspiom\platforms\codec

As show above the Codec folder contains sub-folder, contents of which are described
below.

 codec - The codec folder is the place holder for the all codec driver. This
folder contains ICodec.h and Aic31.h which is the header file included by the
application.

 build – contains CCS 3.3 / CCS 4 project file to build Aic31 library.

 docs – Contains doxygen generated API reference.

 lib – Contains Aic31 libraries

 src – Contains Aic31 driver’s source code.

11.2.2 Build Options

The Aic31 library can be built using the CCS v3.3 project file located at
<ID>\packages\ti\pspiom\platforms\evmOMAPL137\codec\build\ccs3\aic31.pjt. This
project file supports the following build configurations.

It can also be compiled using the CCSv4 project file located at
<ID>\packages\ti\pspiom\platforms\evmOMAPL137\codec\build\ccs4\

Page 111 of 145

OMAPL137 BIOS PSP User Guide

IMPORTANT NOTE:

All build configurations require environment variable
%EDMA3LLD_BIOS5_INSTALLDIR% to be defined. This variable must point to
“<EDMA3_INSTALL_DIR>\packages”.

Debug:

 “-g –mo –mv6740” compile options used to build library.

iDebug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “Aic31_DEBUGPRINT_ENABLE to enable Aic31 driver to LOG debug
messages.

Release:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

iRelease:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

 Defines “Aic31_DEBUGPRINT_ENABLE to enable Aic31 driver to LOG debug
messages.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

11.2.2.1 Required and Optional Pre-defined symbols

The Aic31 library must be built with a soc specific pre-defined symbol.

“-DCHIP_OMAPL137” is used above to build for the EVMOMAPL137. Internally this
define is used to select a soc specific header file (soc_OMAPL137.h). This header
file contains information such as base addresses of Aic31 devices, their event
numbers, etc.

The Aic31 library can also be built with these optional pre-defined symbols.

Use -DPSP_DISABLE_INPUT_PARAMETER_CHECK when building library to turn
OFF parameter checking. This symbol is defined for Release and iRelease profiles
by default in the CCS 3.3 pjts provided.

Use -DNDEBUG when building library to turn off runtime asserts. This symbol is
defined for Release and iRelease profiles by default in the CCS 3.3 pjts provided.

11.3 Features
This section details the features of Aic31 codec driver and how to use them in detail.

11.3.1 Multi-Instance

The Aic31 codec driver can operate on all the instances of Aic31 on the
EVMOMAPL137 board. Different instances are specified during driver creation time.
Supported instance currently are 0 with instance id 0.

Page 112 of 145

OMAPL137 BIOS PSP User Guide

These instances can be operated simultaneously with configurations supported by
AIc31 driver.

These instances can operate simultaneously with configurations supported by the
Aic31 driver. Aic31 instances are created as follows:

1. Static creation – static creation is done in the “tcf” file of the application; this
creation happens at build time. The UDEV module (UDEV.create) is used
during static configuration. An instance of the UDEV module at static
configuration time corresponds to creating and initializing an Aic31 instance

2. Dynamic creation – Dynamic creation of an Aic31 instance is done in the
application source files by calling DEV_createDevice(); this creation happens
at runtime.

UDEV.create and DEV_createDevice allow user to specify the following:

 iomFxns: Pointer to IOM function table. Aic31 driver requires this field to be
Aic31_IOMFXNS.

 initFxn: Codec driver requires that the user call Aic31_init() as part of this
initFxn. Users can also directly hook in Aic31_init().

 device parameters: Aic31 requires the user to pass an Aic31_Params struct.
This struct must exist in the application source files and it must be initialized
very early as part of driver specific initFxn.

 deviceId to identify the Aic31 peripheral.

For more information on configuring UDEV and Aic31, please refer to the Aic31
sample application (included with this driver release), and the DSP/BIOS API
Reference (spru403o.pdf, included in your DSP/BIOS installation).

11.3.2 Each Instance as Transmitter and receiver

Aic31 driver can be used to configure the transmitter and receiver section of the
Aic31 codec independently. Each of the sections can be configured independently by
creating an SIO Channel as an INPUT channel and creating another SIO Channel as
an OUTPUT channel. The type of Channel is specified while creating the channel
(using SIO_create()specify “IOM_OUTPUT” or “IOM_INPUT”). The configuration
parameters are explained in the sections to follow.

11.3.3 Interfaces to control the codec

The Aic31 driver provides the interface to control the specific features of the codec
through a well defined set of IOCTL commands. The IOCTL commands supported are
listed in the section 11.5

11.4 Configurations
Following tables document some of the configurable parameter of AIC31. Please
refer to Aic31.h for complete configurations and explanations.

11.4.1 Aic31_Params

This structure defines the device configurations, expected to supply while creating
the driver. This is provided when driver channels are created (e.g. SIO_create).

Members Description

acType Type of the codec

acControlBusType Control bus to be used by the AIC for configuring of
the codec(I2C/SPI)

Page 113 of 145

OMAPL137 BIOS PSP User Guide

acCtrlBusName Name of the control bus in the driver table.

acOpMode Operational mode of the codec(Master/slave)

acSerialDataType Data transfer format(DSP/TDM/I2S etc)

acSlotWidth Slot width of the data

acDataPath Mode to configure the codec.

isRxTxClockIndependent is the clocks for the RX and TX sections independent

Apart from the instance parameters described above build options can also be added
or removed to add/remove features.e.g -DPSP_DISABLE_INPUT_PARAMETER_CHECK

11.4.2 Aic31_ChannelConfig

Applications could use this structure to configure the channel specific configurations.

Members Description

samplingRate Audio data sampling rate to be used

chanGain Initial gain to be programmed for the channel (in percent)

bitClockFreq Bit clock frequency to be used

numSlots Number of slots for the audio data

11.4.3 Codec Configuring

The codec usually is configured using an I2C bus or a SPI bus. Hence the codec
internally uses an I2c or SPI driver to configure the codec. The codec uses only the
interrupt mode of the driver to configure the codecs. It also uses a call back function
to synchronize each access done to/with the control bus.

11.5 Control Commands
Following table describes some of important the control commands, for a
comprehensive list please refer the ICOTL defined in Aic31.h

Command Arguments Description

Aic31_AC_IOCTL_MUTE_ON None Configures the mute for the
codec

Aic31_AC_IOCTL_MUTE_OF
F

None Disables the

Aic31_AC_IOCTL_SET_VOL
UME

UInt32 * Set the required volume for
the codec

Aic31_AC_IOCTL_SET_LOO
PBACK

None Not supported

Aic31_AC_IOCTL_SET_SAM
PLERATE

UInt32 * Gets the current sample rate
for the audio codec

Aic31_AC__IOCTL_REG_WR
ITE

Aic31_RegData
*

Writes to the specified
register

Aic31_AC_IOCTL_REG_REA
D

Aic31_RegData
*

Reads from the specified
register

Page 114 of 145

OMAPL137 BIOS PSP User Guide

Aic31_AC_IOCTL_REG_WRI
TE_MULTIPLE

Aic31_RegData
*

Writes to the specified
number of registers

Aic31_AC_IOCTL_REG_REA
D_MULTIPLE

Aic31_RegData
*

Reads from the specified
number of registers

Aic31_AC_IOCTL_SELECT_
OUTPUT_SOURCE

ICodec_Output
Dest *

Selects the output
destination of the audio
codec

Aic31_AC_IOCTL_SELECT_
INPUT_SOURCE

ICodec_InputD
est *

Selects the input source of
the

Audio codec

Aic31_AC_IOCTL_GET_COD
EC_INFO

ICodec_CodecD
ata *

Gets the codec specific
information

11.6 Use of AIC31 driver through SIO APIs
Following sections explain the use of parameters of SIO calls in the context of AIC31
driver. Note that no effort is made to document the use of Stream calls; any AIC31
specific requirements are covered below.

11.6.1 SIO_create

Parameter
Number

Parameter Specifics to Aic31

1 Device Name string

Unique identifier used to identify this
driver. Please note the name should be
same as specified while creating the
driver. (Either through TCF or
DEV_createDevice ()

2 IO Type

Should be “IOM_INPUT” when Audio
requires to received data and
“IOM_OUTPUT” when Audio requires to
create a transmit channel.

3 bufSize Stream buffer size

4 SIO_Attrs * Parameters required for the creation of the
SIO (e.g. channel parameters)

11.6.2 SIO_ctrl

Parameter
Number

Parameter Specifics to Aic31

1 SIO_Handle Handle returned by SIO_create

2 Command
IOCTL command defined by
device driver to which the
command is intented.

3 Audio_IoctlParam * Pointer to the structure
containing the information

Page 115 of 145

OMAPL137 BIOS PSP User Guide

about the device to which the
command is intended and also
the extra information required
in case of certain IOCTL
commands.

11.6.3 Stream_issue

Parameter
Number

Parameter Specifics to Aic31

1 Channel Handle Handle returned by SIO_create

2 Pointer to buffer
Should be pointer to variable of
type that holds the data to be
transmitted.

3 arg User argument

4 Size Size of the transaction

11.6.4 SIO_reclaim

Parameter
Number

Parameter Specifics to Aic31

1 channel Handle Handle returned by SIO_create

2 Pointer to buffer
Should be pointer to variable
Uint32 * that holds the audio
data.

3 Pointer to arg User argument return

11.7 Sources that need re-targeting

11.7.1 ti/pspiom/cslr/soc_OMAPL137.h (soc specific header file):

This file contains target (SoC) specific definitions. In most cases, changing the values
for the of SoC specific details done here should suffice. However, if there are major
changes in the hardware instance then the driver file may be needed to change.

11.8 EDMA3 Dependency
Aic31 driver does not use the EDMA mode of transfer. It does not handle any kind of
data transfer requests.

11.9 Known Issues
Please refer to the top level release notes that came with this release.

11.10 Limitations
Please refer to the top level release notes that came with this release.

Page 116 of 145

OMAPL137 BIOS PSP User Guide

12 BLOCK MEDIA driver

12.1 Introduction
This section is the reference guide for the Block media device driver which explains
the features and tips to use them.

DSP/BIOS applications use the block media driver through the PSP APIs provided by
Block media package. The following sections describe in detail, procedures to use
this driver and configure it. It is recommended to go through the sample application
of storage drivers to get familiar with initializing and using the Block media driver.

The Block Media Driver is written for working with ERTFS. Hence only a ERTFS
adaptation is provided. The terms File System and ERTFS are used interchangeably
throughout this document.

The interface to the ERTFS file system is guarded by the PSP_FILE_SYSTEM
macro which is set to ‘0’ (zero) in blkmediaRaw.pjt. This is enabled to ‘1’
(one) in blkmediaFileSystem.pjt. The library generated by this should be
used when using block media driver with ERTFS file system.

12.1.1 Key Features

 Provides both Sync access for File system as well as for Raw/Sector level
access (for eg. USB MSC Class).

 Provides interfaces for Mass Storage Class clients like USB, NAND to talk to
Storage Block devices in a uniform way.

 Provides support for big block sector sizes.

 Supports cache alignment on unaligned buffers from application.

 Provides Write Protect support, Removable media support.

12.2 Installation
The Block media device driver is a part of PSP product for OMAPL137 and would be
installed as part of product installation.

12.2.1 Block Media Component folder

On installation of PSP package for the OMAPL137, the Block media driver can be
found at <ID>\ ti\pspiom\blkmedia\

As shown above, the block media folder contains several sub-folders, the contents of
which are described below:

 blkmedia - The blkmedia folder is the place holder for the entire BLOCK
MEDIA driver. This folder contains psp_blkdev.h which is the header file
included by the application.

 build – contains CCS 3.3 / CCS 4 project file to build Block media library.
This folder contains two projects inside ccs3 folder:

o blkmediaRaw.pjt – This pjt is used when block media is working in Raw mode.

o blkmediaFileSystem.pjt – This pjt is used when block media when File system is used

Page 117 of 145

OMAPL137 BIOS PSP User Guide

The respective ccs 4 projects are inside the ccs4\filesystem and ccs4\raw
folder

 docs – Contains doxygen generated API reference.

 lib – Contains Block media libraries

 src – Contains Block media driver’s source code.

12.2.2 Build Options

The Block media library can be built using the CCS v3.3 project file located at
<ID>\packages\ti\pspiom\blkmedia\build\ccs3\OMAPL137\. The project files support
the following build configurations.

IMPORTANT NOTE:

All build configurations require environment variable
%EDMA3LLD_BIOS5_INSTALLDIR% to be defined. This variable must point to
“<EDMA3_INSTALL_DIR>\packages”.

Debug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

Release:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver.

iDebug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

 Defines “BLKMEDIA_INSTRUMENTATION_ENABLED” to enable Block media
driver to LOG debug messages.

iRelease:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

 Defines “BLKMEDIA_INSTRUMENTATION_ENABLED” to enable Block media
driver to LOG debug messages.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver.

IMPORTANT NOTE:

Instrumentation code inside macros for idebug and irelease are not
implemented and are just a place holder for future implementation.

12.2.2.1 Required and Optional Pre-defined symbols

The Block media library must be built with a soc specific pre-defined symbol.

Page 118 of 145

OMAPL137 BIOS PSP User Guide

“-DCHIP_OMAPL137” is used above to build for OMAPL137. Internally this define is used to
select a soc specific header file (soc_OMAPL137.h). This header file contains information
such as base addresses of block media devices, their event numbers, etc.

The Block media library can also be built with these optional pre-defined symbols.

Use -DPSP_DISABLE_INPUT_PARAMETER_CHECK when building library to turn OFF
parameter checking. This symbol is defined for Release profiles by default in the CCS 3.3 pjts
provided.

Use -DNDEBUG when building library to turn off runtime asserts. This symbol is defined for
Release profiles by default in the CCS 3.3 pjts provided.

12.3 Configurations
Following tables document some of the configurable parameter of BLOCK MEDIA.
Please refer to psp_blkdev.h for complete configurations and explanations.

12.3.1 Configuration defines

The following configuration defines are provided:

Members Default Values Description

PSP_BUFF_ALIGNMENT Enabled This macro enables the buffer alignment
mechanism in BLOCK MEDIA. If
application passes unaligned buffer for
read/write from storage media, then
block media aligns this buffer to cache
line length and passes it to storage
driver. Please note that if the underlying
storage driver uses EDMA mode of
operation then the buffer passed to the
storage driver should be cache aligned.

PSP_BUFFER_IO_SIZE 0x100000 bytes Buffer size for IO access. This buffer is
used when File System is used.

PSP_BUFFER_ASYNC_SIZE 0x7D000 bytes Buffer size for RAW access. This buffer is
used when RAW mode of media driver is
used.

PSP_BLK_EDMA_MEMCPY_IO Enabled For buffer alignment, to enable EDMA
copy for IO mode this macro must be
defined. If this is undefined then
BLKMEDIA will use the memcpy. This is
used when alignment is required during
access from file system.

PSP_BLK_EDMA_MEMCPY_ASYNC Disabled For buffer alignment, to enable EDMA
copy for RAW mode this macro must be
defined. If this is undefined then
BLKMEDIA will use the memcpy.
Currently the driver uses memcpy for
RAW mode. This is used when alignment
is required during access from RAW
application.

PSP_BLK_DEV_MAXDEV PSP_BLK_DRV_MAX
= 2

Number of Instances of storage drives
supported. Currently set to

Page 119 of 145

OMAPL137 BIOS PSP User Guide

PSP_BLK_DRV_MAX (MMC,NAND and
SATA, USB) which is an enum having
details of how many storage drivers are
there.

12.3.2 Run time configuration

Applications could use following parameters to configure block media driver at run
time. These parameters are provided when the block media driver is initialized.

Parameters Description
hEdma The handle to the EDMA driver.
edmaEventQ EDMA Event Queue number to be used for Block Media.
taskPrio Block media task priority. The priority should be greater than

any other storage task priority. The value should be in
supported rage of OS.

taskSize Stack size for Block Media task. Minimum 4Kbytes.

12.3.3 Block Device IOCTL structure

Applications could use this structure for populating different ioctls (e.g.
PSP_blkmediaDevIoctl)

Members Description
Cmd IOCTL command defined by Block media or storage driver.
pData Pointer to misc arguments if required by the command. Data

type information is defined in the IOCTL.
pData1 Second data arg., if required

12.3.4 Block Driver IOCTL structure

Applications could use this structure for raw operation of block media (e.g.
PSP_blkmediaDrvIoctl)

Members Description
Cmd IOCTL command defined by Block media for RAW usage (e.g.

PSP_BlkDrvIoctl_t).
pData Pointer to misc arguments if required by the command. Data

type information is defined in the IOCTL.
pData1 Second data arg., if required

12.4 Block media driver API’s
Following sections explain the use of parameters for functions of Block media driver.
The Block Media driver provides isolation so that either File System or RAW
application owns a particular block device. The API’s are broadly divided in to four
sections:

12.4.1 Init/De-init API’s

12.4.1.1 PSP_blkmediaDrvInit - This function initializes the block media driver, take the
resources, initialize the data structure and create a block media task for storage
driver registration. This function also takes EDMA channel for alignment if the option

Page 120 of 145

OMAPL137 BIOS PSP User Guide

is selected. Block media needs to be initialized before any initialization to storage
driver (if block media is used to access the storage driver). This function also
initializes the file system (if supported).

Parameter
Number

Parameter Specifics to Block Media

1 hEdma EDMA driver handle.

2 edmaEventQ EDMA Event Queue number to be used for
Block Media

3 taskPrio Block media task priority. The priority should
be greater than any other storage task
priority. The value should be in supported
rage of OS.

4 taskSize Stack size for Block Media task. Minimum
4Kbytes.

12.4.1.2 PSP_blkmediaDrvDeInit - This function de-initialize the Block Media Driver. This
function de-allocates any resources taken during init and deletes the task created
during init. The function also frees the EDMA channel allocated during init. This
function also de-init the file system (if supported).

Parameter
Number

Parameter Specifics to Block Media

1 Void None

Note: These API are required irrespective of sample application usage (MMCSD or
NAND). These API’s are required to initialize and de-initialize the block media. These
API’s should be called only once during the system.

12.4.2 API’s for storage media

12.4.2.1 PSP_blkmediaDrvRegister - This function registers the storage driver with Block
Media Driver. Storage driver will call this function during initialization of the device
with a function pointer which can be called as soon as device is detected to get the
read write and ioctl pointers of the device. The same parameter is set to NULL
during de-init of a storage device.

Parameter
Number

Parameter Specifics to Block Media

1 driverId Id of the Storage Driver

2 pRegInfo Structure containing the device
register/un-register function. The
function passed here will be used
later to get the read write and
ioctl pointers of the storage
device.

12.4.2.2 PSP_blkmediaCallback - Block Driver Callback interface. This function is used for
propagating events from the underlying storage drivers to the block driver,

Page 121 of 145

OMAPL137 BIOS PSP User Guide

independent of the device context (Ex. Device insertion/removal, media write
protected).

Parameter
Number

Parameter Specifics to Block Media

1 driverId Id of the Storage Driver

2 pRegInfo Storage Driver Device Event
information.

Note: These API are used by storage media driver and not by applications.

12.4.3 API’s for File System

12.4.3.1 PSP_blkmediaDevIoctl - Handle the BLK IOCTL commands when device is active.
This IOCTL can be used to set device operation mode, get device sector size, get size
of storage device etc. See supported IOCTL commands in PSP_BlkDevIoctl_t and are
explained below.

Parameter
Number

Parameter Specifics to Block Media

1 driverId Id of the Storage Driver

2 pIoctl IOCTL info structure

Note: This API is used by Application using File System.

12.4.3.2 Control Commands - Following table describes some of important the control
commands in PSP_BlkDevIoctl_t, for a comprehensive list please refer the IOCTL
defined in psp_blkdev.h

Command Arguments Description

PSP_BLK_GETSECTMAX Uint32* Get the Max Sector information
from the underlying storage
driver.

PSP_BLK_GETBLKSIZE Uint32* Get the Block Size of one
Sector on the storage media.

PSP_BLK_SETPWRMODE None Set the Power mode for the
device. Currently this IOCTL is
not supported in any driver.

PSP_BLK_SETOPMODE PSP_BlkOpMode
*

Set the Operating Mode for the
storage device. (Depends on the
underlying storage driver
support for this IOCTL command)

PSP_BLK_GETOPMODE PSP_BlkOpMode
*

Get the Operating Mode of the
storage device

PSP_BLK_DEVRESET None Reset the block device.
Currently this IOCTL is not
supported in any driver.

PSP_BLK_GETWPSTAT Bool* Get the storage media write
protect status.

PSP_BLK_GETREMSTAT Bool* Is the storage device removable

Page 122 of 145

OMAPL137 BIOS PSP User Guide

or not.

PSP_BLK_SETEVENTQ PSP_Mmcsd_Edm
a_EventQueue*

Set Event queue of EDMA channel
for storage media.

PSP_BLK_IOCTL_MAX None This IOCTL is added to the any
specific media ioctl to use the
media specific ioctls.

12.4.4 API’s for Non File system application

12.4.4.1 PSP_blkmediaAppRegister - The Media Driver clients like Mass Storage drivers shall
use this function to register a storage driver as RAW application for a Block media
device.

Parameter
Number

Parameter Specifics to Block Media

1 AppCb Address of the callback function of
application which will be called
after every read and write.

2 pIntOps Block Interface driver structure
with member DevOps having read
write and ioctl function pointers.
PSP_BlkDevOps_t structure will
contain address of a read write
and ioctl function after returning
from this function. This will be use
by application for read, write and
ioctl functions of storage device.

3 pHandle Block Driver Device Handle for the
storage device. This will be the
first arg of read, write and ioctl
functions called by the application.

12.4.4.2 PSP_blkmediaAppUnRegister - Media Driver clients like Mass Storage drivers shall
use this function to un-register from a Block device.

Parameter
Number

Parameter Specifics to Block Media

1 handle Block Media Device handle.

12.4.4.3 PSP_blkmediaDrvIoctl - Handle the BLK IOCTL commands when device is active.
This IOCTL can be used to set a storage device for RAW access, get which device is
currently set for RAW access, set init completion callback for the storage device etc.
See supported IOCTL commands in PSP_BlkDrvIoctl_t.

Parameter
Number

Parameter Specifics to Block Media

1 pDevName Address of variable which contains
Device Name

2 pIoctl IOCTL info structure.

Page 123 of 145

OMAPL137 BIOS PSP User Guide

12.4.4.4 Control Commands - Following table describes some of important the control
commands, for a comprehensive list please refer the IOCTL defined in psp_blkdev.h

Command Arguments Description

PSP_BLK_DRV_SETRAWDEV PSP_BlkDrvId_
t *

Set a device for RAW access.

PSP_BLK_DRV_GETRAWDEV PSP_BlkDrvId_
t *

Get which device is currently
set for raw access.

PSP_BLK_DRV_SET_INIT_CO
MP_CALLBACK

Uint32 * Sets the init completion call
back function for storage
device. This needs to be used
only by storage drivers and not
applications.

Note: These API are required when application wants to use the storage driver for
RAW access.

12.5 Use of Block media driver for RAW application interface
The section discusses in detail about RAW application interface. The Block Media
Driver provides the interfaces to access the registered block device in RAW mode.
The section discusses in detail about how to interface a with block media for RAW
application interface. The block media driver must be initialized before using any API
of Block media.

12.5.1 Set Driver as RAW access

To set any storage device for RAW mode, application must call
PSP_blkmediaDrvIoctl() function with PSP_BLK_DRV_SETRAWDEV as a command.
Application has to pass the address of variable of type PSP_BlkDrvId_t, which
contains the Driver id of the device as first parameter and PSP_BlkDrvIoctlInfo_t
structure variable as second parameter. Driver id is enumerated in psp_blkdev.h.

Before registering device for RAW access, application must inform block media driver
about which device, application wants to set as a RAW device using
PSP_blkmediaDrvIoctl() function as explained below, otherwise
PSP_blkmediaAppRegister() function will fail.

For example to configure MMC as a RAW device, application needs to call following
function:

PSP_BlkDrvIoctlInfo_t drvIoctlInfo;

PSP_BlkDrvId_t driverDev = PSP_BLK_DRV_MMC0;

drvIoctlInfo.Cmd = PSP_BLK_DRV_SETRAWDEV;

drvIoctlInfo.pData = (Void*)&driverDev;

PSP_blkmediaDrvIoctl((Void*)&device, &drvIoctlInfo);

Note: Once the application set a RAW device to MMC/SD, the block media continues
to use MMCS/SD as a RAW device, until the application changes the RAW device
using the IOCTL call to set RAW device to NAND. Once application set the RAW
device to MMC/SD or NAND. Block media remembers the registered RAW device
irrespective of multiple times the application calls PSP_blkmediaAppRegister() and
PSP_blkmediaAppUnRegister() function.

Page 124 of 145

OMAPL137 BIOS PSP User Guide

12.5.2 Get RAW device

Block driver provides one more IOCTL to know which device is set as RAW Device.
Application has to call PSP_blkmediaDrvIoctl() function with
PSP_BLK_DRV_GETRAWDEV IOCTL command. For example

PSP_BlkDrvIoctlInfo_t drvIoctlInfo;

PSP_BlkDrvId_t device;

drvIoctlInfo.Cmd = PSP_BLK_DRV_GETRAWDEV;

drvIoctlInfo.pData = (Void*)&driverDev;

PSP_blkmediaDrvIoctl((Void*)&device, &drvIoctlInfo);

12.5.3 Register RAW Client

To register any storage device (NAND, MMCSD) as a RAW device, application needs
to call PSP_blkmediaAppRegister() function by passing,

1. Address of callback function which will be called after every read and write
function call.

2. Address of variable of PSP_BlkDevOps_t type structure, which will hold read,
write and IOCTL function pointers.

3. Address of variable (Handle) of type void*. Block Media returns the handle of
storage device in this parameter.

Application can now read, write and control device using the function pointers and
(Handle) which was returned from PSP_blkmediaAppRegister() function.

For example to register MMC driver as a RAW device, application needs to call
following function:

PSP_BlkDevOps_t pDevOps1;

PSP_BlkDevOps_t* pDevOps = &pDevOps1;

Ptr handle;

PSP_blkmediaAppRegister(&blkMmcsdTestCallBack, &pDevOps, &handle);

12.5.4 Read/Write

For writing and reading from the storage device, application has to call read/write
function pointer, using variable PSP_BlkDevOps_t structure which was returned by
PSP_blkmediaAppRegister(). Application has to pass

1. Variable (Handle) of type void* as a first argument, which was returned from
PSP_blkmediaAppRegister() function.

2. Address of variable of structure PSP_BlkDevRes_t (to get error value).

3. Address of data buffer. (To or from data needs to be read or written).

4. Location of sector (Sector number) where data is required to be written.

5. Number of sectors to be written. (Size of data (bytes)/sector size (byte)).

For example, to read/write 1024 bytes from 0th sector number of MMC device which
has been registered as a RAW device, application needs to call following function:

Page 125 of 145

OMAPL137 BIOS PSP User Guide

PSP_BlkDevRes_t MMCSD_TestInfo;

Uint8 srcmmcsdBuf[1024];

Uint8 dstmmcsdBuf[1024];

pDevOps->Blk_Write(handle, (Ptr)&MMCSD_TestInfo, srcmmcsdBuf, 0, 2);

pDevOps->Blk_Read(handle, (Ptr)&MMCSD_TestInfo, dstmmcsdBuf, 0, 2);

12.5.5 IOCTL

For writing and reading from the storage device, application has to call ioctl function
pointer, using variable PSP_BlkDevOps_t structure which was returned by
PSP_blkmediaAppRegister(). Application has to pass

1. Variable (Handle) of type void* as a first argument, which was returned from
PSP_blkmediaAppRegister() function.

2. Address of variable of structure PSP_BlkDevRes_t (to get error value).

3. Address of variable of structure PSP_BlkDevIoctlInfo_t containing the ioctl
information.

4. Address of a bool variable.

For example, to get block size from the storage device which has been registered as
a RAW device, application needs to call following function:

PSP_BlkDevRes_t MMCSD_TestInfo;

PSP_BlkDevIoctlInfo_t ioctlInfo;

Uint32 blockSize;

Bool isComplete;

ioctlInfo.Cmd = PSP_BLK_GETBLKSIZE;

ioctlInfo.pData = (Void*)&blockSize;

pDevOps->Blk_Ioctl(handle, (Ptr)&MMCSD_TestInfo, &ioctlInfo,
&isComplete);

12.5.6 Unregister RAW device

To un-register a device, Block media driver provides PSP_blkmediaAppUnRegister()
function. Application needs to pass variable (Handle) which was returned in
PSP_blkmediaAppRegister() function.

For example to un-register a device which has been registered as a RAW device,
application needs to call following function:

PSP_blkmediaAppUnRegister(Handle);

12.6 Use of Block Media driver for File System Interface
Block media driver is an interface layer between ERTFS and low level device driver
for storage. Block media provides adaptation of storage driver to ERTFS. Please note

Page 126 of 145

OMAPL137 BIOS PSP User Guide

it is required to set the FILE_SYSTEM macro to 1 for block media to work seamlessly
with the ERTFS file system. The macro is available in psp_blkdev.h. Once the block
media driver is initialized then the application can call any of the ERTFS API.
Following is the special case for interfacing with block media for ioctls:

12.6.1 IOCTL

To use any IOCTL functions of the block media or storage device user can use
following method

For using ioctl from the storage device, application has to call PSP_blkmediaDevIoctl ()
function. Application has to pass

1. Variable of type PSP_BlkDrvId_t as the first argument.

2. Address of variable of structure PSP_BlkDevIoctlInfo_t containing the ioctl
information.

For example, to get block size from the storage device application needs to call
following function:

PSP_BlkDevIoctlInfo_t ioctlInfo;

Uint32 blockSize;
ioctlInfo.Cmd = PSP_BLK_GETBLKSIZE;

ioctlInfo.pData = (Void*)&blockSize;

PSP_blkmediaDevIoctl(PSP_BLK_DRV_MMC0, &ioctlInfo);

12.7 Sources that need re-targeting

12.7.1 ti/pspiom/cslr/soc_OMAPL137.h (soc specific header file):

This file contains target (SoC) specific definitions. In most cases, changing the values
for the SoC specific details done here should suffice. However, if there are major
changes in the hardware instance then the driver file may be needed to change.

12.8 EDMA3 Dependency
Block media driver relies on EDMA3 LLD driver to move data from/to application
buffers to storage buffer for unaligned application buffers; typically EDMA3 driver is
PSP deliverable unless mentioned otherwise. Please refer to the release notes that
came with this release. Please ensure that current PSP release is compliant with
version of EDMA3 driver being used.

12.8.1.1 Used Paramset of EDMA 3
PSP driver uses TWO paramsets of EDMA3; if there are no paramsets are available the PSP
driver creation would fail. These paramsets are used through the life time of PSP driver. No link
paramsets are used.

12.9 Known Issues
Please refer to the top level release notes that came with this release.

12.10 Limitations
Please refer to the top level release notes that came with this release.

Page 127 of 145

OMAPL137 BIOS PSP User Guide

12.11 Block Media Sample application
Please refer to the sample application section of NAND and MMCSD for details on
interfacing block media for RAW interface.

Please note that the ti.pspiom.blkmedia.raw.a674 library needs to be linked for block
media to work seamlessly with media devices in raw mode.

Please refer to the examples section in the File system package for using the file
system interface. Please note that the ti.pspiom.blkmedia.filesystem.a674 library
needs to be linked for block media to work seamlessly with the ERTFS file system.

12.12 Dependencies
The storage sample application is dependent on the following drivers

a. Block media driver
b. Storage driver (MMCSD or NAND).
c. File system(In case file system calls are used)

Page 128 of 145

OMAPL137 BIOS PSP User Guide

The block diagram below depicts the dependencies between the different drivers in
the sample application. The application interact with the block media driver interface
through RAW PSP block media calls or File system related calls (open, read, write
etc.). The block media interface internally interacts with the registered storage media
driver and finally the call comes to that particular storage media driver. The storage
media drivers internally use the operation mode configured to transfer the data from
the actual media device. The application needs to configure and initialize the block
media first and then the storage drivers in the required modes for operation.

12.12.1.1 Block media Driver

Block Media Driver module lies below the application and file system layer. The Block
Media Driver transfers calls from application/file system to the lower layer storage
drivers registered. The Block media driver is synchronous driver. Block media driver
is designed as a monolithic block of code in a single file as it is just a generic
abstraction layer between storage media drivers and File system/applications.
Storage driver gets themselves registered to the block media driver so that
application can use their services seamlessly.

12.12.1.2 Storage Driver

The Storage drivers are used for data storage to various devices e.g. multimedia
card (MMC)/secure digital (SD) card or NAND devices. Storage driver lies below the
Block Media module. The Block Media Driver transfers calls from application/file
system to the MMCSD driver which is registered to block media. The storage driver
actually read/write the data to the card.

The storage device driver is partitioned and its functionality can be enacted by three
key roles defined here under:

 Interfacing with the generic block media layer

APPLICATION

Block Media Driver

File System

DSP-
BIOS

Hardware

NAND etc.MMCSD

Raw Calls

Storage
Media
Driver

Page 129 of 145

OMAPL137 BIOS PSP User Guide

 Implementing the protocol part of the driver

 Providing services to perform primitive access necessary to
control/configure/examine status, of the underlying h/w device.

12.12.1.3 File System

File system can be used if it is required to have a FAT file system on the storage
media. File system provided by RTFS, can be used to read and write data to a
storage device. Please refer to RTFS user guide for more details. The registration of a
storage driver to the file system is take care by the Block media driver.

12.12.1.4 Application

The Application can interact with the Storage driver either through file system or
through the RAW Calls.

Page 130 of 145

OMAPL137 BIOS PSP User Guide

13 MMCSD driver

13.1 Introduction
This section is the reference guide for the MMCSD device driver which explains the
features and tips to use them.

DSP/BIOS applications use the mmcsd driver through the PSP APIs provided by
MMCSD package. The following sections describe in detail, procedures to use this
driver and configure it. It is recommended to go through the sample application to
get familiar with initializing and using the mmcsd driver.

13.1.1 Key Features

 Re-entrant safe driver

 Provides Async IO mechanism

 Configurable to operate in Polled and DMA mode

 Supports hot removal and insertion of MMC/SD card

 Supports variety of SD and MMC cards

13.2 Installation
The MMCSD device driver is a part of PSP product for OMAPL137 and would be
installed as part of product installation.

13.2.1 MMCSD Component folder

On installation of PSP package for the OMAPL137, the MMCSD driver can be found at
<ID>\ ti\pspiom\mmcsd\

As shown above, the mmcsd folder contains several sub-folders, the contents of
which are described below:

 mmcsd - The mmcsd folder is the place holder for the entire MMCSD driver.
This folder contains psp_mmcsd.h which is the header file included by the
application.

 build – contains CCS 3.3 / CCS 4 project file to build Mmcsd library.

 docs – Contains doxygen generated API reference.

 lib – Contains Mmcsd libraries

 src – Contains MMCSD driver’s source code.

13.2.2 Build Options

The MMCSD library can be built using the CCS v3.3 project file located at
<ID>\packages\ti\pspiom\mmcsd\build\OMAPL137\ccs3\mmcsd.pjt. This project file
supports the following build configurations.

IMPORTANT NOTE:

Page 131 of 145

OMAPL137 BIOS PSP User Guide

All build configurations require environment variable
%EDMA3LLD_BIOS5_INSTALLDIR% to be defined. This variable must point to
“<EDMA3_INSTALL_DIR>\packages”.

Debug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

iDebug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

 Defines “MMCSD_INSTRUMENTATION_ENABLED” to enable Mmcsd driver to
LOG debug messages.

Release:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

iRelease:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

 Defines “MMCSD_INSTRUMENTATION_ENABLED” to enable Mmcsd driver to
LOG debug messages.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver.

IMPORTANT NOTE:

Instrumentation code inside macros for idebug and irelease are not
implemented and are just a place holder for future implementation.

13.2.2.1 Required and Optional Pre-defined symbols

The Mmcsd library must be built with a soc specific pre-defined symbol.

“-DCHIP_OMAPL137” is used above to build for OMAPL137. Internally this define is used to
select a soc specific header file (soc_OMAPL137.h). This header file contains information
such as base addresses of mmcsd devices, their event numbers, etc.

The MMCSD library can also be built with these optional pre-defined symbols.

Use -DPSP_DISABLE_INPUT_PARAMETER_CHECK when building library to turn OFF
parameter checking. This symbol is defined for Release and iRelease profiles by default in
the CCS 3.3 pjts provided.

Use -DNDEBUG when building library to turn off runtime asserts. This symbol is defined for
Release and iRelease profiles by default in the CCS 3.3 pjts provided.

13.3 Features
This section details the features of MMCSD and how to use them in detail.

Page 132 of 145

OMAPL137 BIOS PSP User Guide

13.3.1 Multi-Instance

The MMCSD driver can operate on the instance 0 of MMCSD on the EVMOMAPL137.

13.3.2 Notes for Usage of Driver

 PSP_blkmediaDevIoctl() could be used to invoke IOCTL calls on the Block Media
layer. Some IOCTLs are standard and need to be implemented by the underlying
media layer, and these IOCTL numbers are defined in psp_blkdev.h. These IOCTLs
are routed appropriately to the underlying media layer as applicable. However, some
IOCTL commands may be specific for underlying media layer. In such cases the
IOCTL command that is to be passed to PSP_blkmediaDevIoctl() is
(PSP_BLK_IOCTL_MAX + specific command number of the underlying media layer).
For example, PSP_BLK_GETOPMODE is a standard command and will return the
operating mode of the underlying media layer that is queried in the IOCTL call.
However, reading the registers from the MCMSD card is a specific operation on
MMCSD. This IOCTL number is defined in psp_mmcsd.h. The command number for
this should be passed as (PSP_MMCSD_IOCTL_GET_CARDREGS +
PSP_BLK_IOCTL_MAX).

 Interrupt based card detection of card insertion on SD/MMC is not supported in the
driver. This should be taken care by application. Please refer to the sample
application for an implementation of the same. If the application would not want
interrupt based card detection of card insertion and still check the insertion of
MMCSD card then it could be polled for this via PSP_mmcsdCheckCard(). There is
also IOCTL which checks for presence of MMC/SD cards but this IOCTL will not work
through block media layer unless underlying device is registered with block media
layer, since the block media layer passes any device specific IOCTL calls to the
underlying media layer.

 The driver, exposed to the applications, can be used either using file system mode or
block media mode. Block media mode should be considered as RAW mode for
the system. Please refer to the block media documentation for block media API’s

13.4 Configurations
Following tables document some of the configurable parameter of MMCSD. Please
refer to psp_mmcsd.h for complete configurations and explanations.

13.4.1 Run time configuration

Applications could use following parameters to configure mmcsd driver at run time.
These parameters are provided when the mmcsd driver is initialized.

Parameters Description
moduleFreq MMCSD Controller clock frequency.
instanceId MMCSD instance id.
config MMCSD configuration pointer of type PSP_MmcsdConfig.

13.4.2 PSP_MmcsdConfig

Applications could use this structure to configure the mmcsd. This is provided when
mmcsd is initialized.

Parameters Description

Page 133 of 145

OMAPL137 BIOS PSP User Guide

opMode MMCSD driver operating mode of type PSP_MmcsdOpMode.
Only Polled and EDMA mode is supported.

hEdma Edma Handle pointer.
eventQ EDMA Event Queue of type PSP_MmcsdEdmaEventQueue.
hwiNumber Hardware event number for mmcsd.
pscPwrmEnable Boolean flag to enable (TRUE) or disable (FALSE) any power

management in the driver

13.4.3 Polled Mode

The configurations required for polled mode of operation are:

Init configuration opMode should be set to PSP_MMCSD_OPMODE_POLLED.
Additionally the EDMA handle parameter for the data transfer operation can be
passed as NULL.

13.4.4 DMA Interrupt Mode

The configurations required for DMA Interrupt mode of operation are:

Init configuration opMode should be set to PSP_MMCSD_OPMODE_DMAINTERRUPT.
Additionally the hwiNumber assigned by the application for the MMCSD CPU events
group should be passed, so that the driver can enable proper interrupts. Also the
handle to the EDMA driver, hEdma, should be passed by the application. The Event
Queue, eventQ, parameter can be set to PSP_MMCSD_EDMA3_EVENTQ_0 or
PSP_MMCSD_EDMA3_EVENTQ_1.

13.5 Control Commands
Following table describes some of important the control commands, for a
comprehensive list please refer the IOCTL defined in psp_mmcsd.h

Command Arguments Description

PSP_MMCSD_IOCTL_START NONE Used in RAW mode

PSP_MMCSD_IOCTL_GET_CAR
DREGS

PSP_MmcsdCard
Regs *

Pointer to an PSP_MmcsdCardRegs
variable, that would used by
the driver to return back the
different card register values

PSP_MMCSD_IOCTL_GET_BLO
CKSIZE

Uint32* Pointer to Uint32 variable,
that would used by the driver
to return back number of bytes
per sector of MMC/SD device

PSP_MMCSD_IOCTL_CHECK_C
ARD

PSP_MmcsdCard
Type *

Pointer to PSP_MmcsdCardType
variable, that would used by
the driver to return back which
card is present (MMC or SD)

PSP_MMCSD_IOCTL_GET_OPM
ODE

PSP_MmcsdOpMo
de *

Pointer to PSP_MmcsdOpMode
variable that would be used by
the driver to return back the
operating mode of the MMCSD
device.

PSP_MMCSD_IOCTL_SET_CAL
LBACK

PSP_MmcsdAppC
allback *

Pointer to PSP_MmcsdAppCallback
variable that would be used by
the driver to set callback

Page 134 of 145

OMAPL137 BIOS PSP User Guide

function which will be called
after every read/write. This
will be already used by Block
Media so application should not
use this, unless it is used for
RAW mode of operation without
using block media and file
system.

PSP_MMCSD_IOCTL_SET_HWE
VENT_NOTIFICATION

PSP_MmcsdHwEv
entNotificati
on *

Pointer to
PSP_MmcsdHwEventNotification
variable that would use by the
driver to set callback function
which will be called for media
insertion or removal, to notify
upper layer about hardware
events. This will be already
used by Block Media so
application should not use
this, unless it is used for RAW
mode of operation without using
block media and file system

PSP_MMCSD_IOCTL_GET_HWE
VENT_NOTIFICATION

PSP_MmcsdHwEv
entNotificati
on *

Pointer to
PSP_MmcsdHwEventNotification
variable that would be used by
the driver to return back
callback function which will be
called for media insertion or
removal, to notify upper layer
about hardware events.

PSP_MMCSD_IOCTL_GET_CAR
D_SIZE

Uint32 * Pointer to Uint32 variable that
would be used by the driver to
return size of MMC/SD card in
bytes for all cards except for
High capacity card. In the case
of High capacity SD card , it
is returned in KBytes and
using IOCTL
PSP_MMCSD_IOCTL_CHECK_HIGH_CAPA
CITY_CARD, it could be found
whether it is high capacity or
not.

PSP_MMCSD_IOCTL_SET_TEM
PORARY_WP

Bool * Pointer to Bool variable, that
would used by the driver to set
temporary write protect state
of MMC/SD card

PSP_MMCSD_IOCTL_GET_TEM
PORARY_WP

Bool * Pointer to Bool variable, that
would used to get temporary
write protect state of MMC/SD
card

PSP_MMCSD_IOCTL_SET_PER
MANENT_WP

Bool * Pointer to Bool variable, that
would used by the driver to set
permanent write protect state
of MMC/SD card

Page 135 of 145

OMAPL137 BIOS PSP User Guide

PSP_MMCSD_IOCTL_GET_PER
MANENT_WP

Bool * Pointer to Bool variable, that
would used by the driver to get
permanent write protect state
of MMC/SD card

PSP_MMCSD_IOCTL_CHECK_H
IGH_CAPACITY_CARD

Bool * Pointer to Bool variable, that
would used by the driver to
check if the card is high
capacity card or not. This
IOCTL will return true in if it
is high capacity card else
false.

PSP_MMCSD_IOCTL_GET_TOT
AL_SECTORS

Uint32 * Pointer to Uint32 variable,
that would used by the driver
to return size of MMC/SD card
in sectors

PSP_MMCSD_IOCTL_SET_EVE
NTQ

PSP_MmcsdEdma
EventQueue *

Pointer to
PSP_MmcsdEdmaEventQueue
variable, that would used by
the driver to set event queue
of EDMA channel

PSP_MMCSD_IOCTL_SET_CAR
D_FREQUENCY

PSP_CardFrequ
ency *

Pointer to PSP_CardFrequency
variable that would be used by
the driver to set the frequency
of card at which it is supposed
to operate.

PSP_MMCSD_IOCTL_GET_CAR
D_VENDOR

Uint32 * Pointer to Uint32 variable,
that would used by the driver
to return back the vendor id of
MMC/SD

PSP_MMCSD_IOCTL_GET_CON
TROLLER_REG

Uint32 * and
Uint32 *

Pointer to Uint32 variable as
first parameter which pass
register address offset and
another Uint32 pointer
variable, the place holder to
get value at that register
offset.

PSP_MMCSD_IOCTL_SET_CON
TROLLER_REG

Uint32 * and
Uint32 *

Pointer to Uint32 variable as
first parameter which pass
register address offset and
another Uint32 pointer
variable, the value needs to be
written at that register
offset.

13.6 MMCSD Driver APIs
Following sections explain the use of parameters of MMCSD calls in the context of
PSP driver. Only PSP specific requirements are covered below.

13.6.1 PSP_mmcsdDrvInit

Parameter Parameter Specifics to PSP

Page 136 of 145

OMAPL137 BIOS PSP User Guide

Number

1 moduleFreq MMCSD controller clock frequency

2 instanceId MMCSD instance id number

3 config MMCSD config parameter of type
PSP_MmcsdConfig *

13.6.2 PSP_mmcsdDrvDeInit

Parameter
Number

Parameter Specifics to PSP

1 instanceId MMCSD instance id number

13.6.3 PSP_mmcsdCheckCard

Parameter
Number

Parameter Specifics to PSP

1 cardType MMCSD Card variable to be
updated by this function. It is of
type PSP_MmcsdCardType *

2 instanceId MMCSD instance id number

13.7 Sources that need re-targeting

13.7.1 ti/pspiom/cslr/soc_OMAPL137.h (soc specific header file):

This file contains target (SoC) specific definitions. In most cases, changing the values
for the SoC specific details done here should suffice. However, if there are major
changes in the hardware instance then the driver file may be needed to change.

13.8 EDMA3 Dependency
MMCSD driver relies on EDMA3 LLD driver to move data from/to application buffers
to peripheral; typically EDMA3 driver is PSP deliverable unless mentioned otherwise.
Please refer to the release notes that came with this release. Please ensure that
current PSP release is compliant with version of EDMA3 driver being used.

13.9 Known Issues
Please refer to the top level release notes that came with this release.

13.10 Limitations
Please refer to the top level release notes that came with this release.

13.11 MMCSD Sample applications

13.11.1 Dma mode sample

13.11.1.1 Description:

This sample demonstrates the use of the MMCSD driver in DMA mode.

Page 137 of 145

OMAPL137 BIOS PSP User Guide

The MMCSD driver configures I2C statically in mmcsd.tci file inside
platforms\evmOMAPL137 folder. This file can be directly imported into an
application’s tcf script.

The mmcsdSample.tcf file contains the remaining BIOS configuration. The most
important lines in this file which the application may need to pull into his tcf file are
as follows.

bios.ECM.ENABLE = 1;

bios.HWI.instance("HWI_INT7").interruptSelectNumber = 0;

These lines configure the ECM module and map mmcsd events to CPU interrupts. For
example the Mmcsd event number is 15 which falls in ECM group 0. Here ECM group
0 is mapped to HWI_INT7.

The echo() task exercises the mmcsd driver. The configureMmcsd function inside the
platform file takes care of configuring the pin mux (for mmcsd, I2C and GPIO) and
select MMCSD through I2C expander, if UI card is connected and also take care of
GPIO based card detection.

Please note that mmcsdStorageInit and mmcsdStorageDeinit functions provided by
the platform layer are for the ease for sample application writer. If the application
wants to addresss multiple media, then these APIS should not be used as block
media and edma initialization is required only once throughout the system

The init function is mmcsdStorageInit calls the edma3init, block media init and then
the mmcsd init, which initializes the mmcsd driver.

The sample application uses interrupt based detection of card insertion and write
protect status via GPIO. To enable this Mmcsd_GPIO_CDWP_ENABLE should be
defined in the project as a compiler definition. The macro
Mmcsd_GPIO_CDWP_ENABLE is by default enable in the sample application pjt.

The edma3init() initializes the EDMA3 driver and sets up hEdma.

13.11.1.2 Build:

 This sample can be built using

<ID>/packages/ti/pspiom/examples/evmOMAPL137/mmcsd/edma/build/ccs3/mmcs
dSample.pjt

13.11.1.3 Setup:

You need to put a MMC or SD card in the MMCSD slot.

13.11.1.4 Output:

When the sample application runs, it will demonstrate the usage of MMCSD in RAW
mode. The applications show the usage of various MMCSD and block media IOCTL
and then do the read/write operation on some sectors of the MMC or SD card. The
output can be seen on the trace window.

Page 138 of 145

OMAPL137 BIOS PSP User Guide

14 NAND driver

14.1 Introduction
This section is the reference guide for the NAND device driver which explains the
features and tips to use them.

DSP/BIOS applications use the driver typically through PSP APIs provided by NAND
package. The following sections describe in detail, procedures to use this driver and
configure it.

14.1.1 Key Features

 Supports 512-byte page and 2048-byte page NAND devices

 Supports 8-bit and 16-bit NAND devices

 Error correction using 4-bit ECC mechanism

 Supports wear-leveling and bad-block management functionalities

 Supports protecting a portion of the NAND flash from application access

14.2 Installation
The NAND device driver is a part of PSP product for OMAPL137 and would be
installed as part of product installation.

14.2.1 NAND Component folder

On installation of PSP package for the OMAPL137, the NAND driver can be found at
<ID>\ ti\pspiom\nand\

As shown above, the nand folder contains several sub-folders, the contents of which
are described below:

 nand - The nand folder is the place holder for the entire NAND driver. This
folder contains psp_nand.h which is the header file included by the
application.

 build – contains CCS 3.3 / CCS 4 project file to build Nand library.

 docs – Contains doxygen generated API reference.

 lib – Contains Nand libraries

 src – Contains Nand driver’s source code.

14.2.2 Build Options

The Nand library can be built using the CCS v3.3 project file located at
<ID>\packages\ti\pspiom\nand\build\OMAPL137\ccs3\nand.pjt. This project file
supports the following build configurations.

IMPORTANT NOTE:

Page 139 of 145

OMAPL137 BIOS PSP User Guide

All build configurations require environment variable
%EDMA3LLD_BIOS5_INSTALLDIR% to be defined. This variable must point to
“<EDMA3_INSTALL_DIR>\packages”.

Debug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

iDebug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

 Defines “NAND_INSTRUMENTATION_ENABLED” to enable Nand driver to LOG
debug messages.

Release:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

iRelease:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_OMAPL137” to build library for OMAPL137 soc.

 Defines “NAND_INSTRUMENTATION_ENABLED” to enable Nand driver to LOG
debug messages.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

IMPORTANT NOTE:

Instrumentation code inside macros for idebug and irelease are not
implemented and are just a place holder for future implementation.

14.2.2.1 Required and Optional Pre-defined symbols

The Nand library must be built with a soc specific pre-defined symbol.

“-DCHIP_OMAPL137” is used above to build for OMAPL137. Internally this define is used to
select a soc specific header file (soc_OMAPL137.h). This header file contains information
such as base addresses of nand devices, their event numbers, etc.

The Nand library can also be built with these optional pre-defined symbols.

Use -DPSP_DISABLE_INPUT_PARAMETER_CHECK when building library to turn OFF
parameter checking. This symbol is defined for Release and iRelease profiles by default in
the CCS 3.3 pjts provided.

Use -DNDEBUG when building library to turn off runtime asserts. This symbol is defined for
Release and iRelease profiles by default in the CCS 3.3 pjts provided.

14.3 Features
This section details the features of NAND and how to use them in detail.

Page 140 of 145

OMAPL137 BIOS PSP User Guide

14.3.1 Multi-Instance

The NAND driver can operate on 0 instance of EMIFA on the EVMOMAPL137.

14.3.2 Supports 512-byte page and 2048-byte page NAND devices

NAND driver supports both 512-byte page and 2048-byte page devices. The driver
learns about the page size of the device by looking up the device ID and
manufacturer ID in the NAND device organization lookup table. Sector write and read
operations are then performed for the entire length of the sector without requiring
additional configurations.

14.3.3 Supports 8-bit and 16-bit NAND devices

NAND driver supports both 8-bit and 16-bit NAND devices. The driver learns about
the bus width of the device by looking up the device ID and manufacturer ID in the
NAND device organization lookup table. The driver configures the external memory
interface module for the appropriate data bus width.

CAUTION: Driver has not been validated / tested with ONFi compliant NAND devices.

14.3.4 Error correction using 4-bit ECC

NAND driver supports error correction using 4-bit ECC algorithm. The driver uses the
external memory interface module for 4-bit ECC parity generation and error
correction. The parity generated during the sector write operation is copied in the
spare area of the page. During sector reads, the parity stored in the spare area is
read back for the error detection and correction operation.

ECC hardware used is capable of correcting a maximum of 32 bits errors, provided
that these errors occur in 4 bytes for every 512 bytes of data and these 4 bytes need
not be contiguous. If these 32 bits errors (or less than 32 bits but greater than 4
bits) span across 5 bytes of data in 512 byte data boundary the bit errors cannot be
corrected.

14.3.5 Supports wear-leveling and bad-block management functionalities

NAND driver supports block wear-leveling and bad block management functionalities.
These functionalities are transparent to the application, that is, the applications need
not be aware of the wear leveling and bad block management activities performed by
the driver.

14.3.6 Supports protecting a portion of the NAND flash from application access

NAND driver supports protecting a portion the NAND flash from application access.
The protected portion of the NAND flash starts from the second block of the NAND
device to an application specified block number. The application can specify the
number of blocks to be protected during the driver initialization. All the protected
blocks are excluded from the read-write operations.

14.4 Configurations
This section describes the NAND driver data types, data structures, and configurable
parameters of NAND driver. NAND Media could be accessed through File system or
sector level (by passing file system). Following tables document some of the
configurable parameter of NAND. Please refer to psp_nand.h for complete
configurations and explanations.

14.4.1 Configuration defines

The following configuration defines are provided:

Members Default
Values

Description

Page 141 of 145

OMAPL137 BIOS PSP User Guide

PSP_NAND_RESERVED_BLOCKS 24u Number of blocks that would be reserved by
NAND driver and would be used as a
replacement block for a detected BAD block.
These blocks will not be visible to applications.

PSP_NAND_MAX_PAGES_IN_BLOCK 128u Specifies maximum number of pages that would
be support by driver in a given block.

PSP_NAND_MAX_CACHE_LINES 8u Configure maximum number of CACHE lines that
NAND driver could use. Please refer the
architecture document that came with this
release for details.

PSP_NAND_MAX_PAGE_SIZE 2048u Specifies the maximum size of a page that
would be support by NAND driver.

PSP_NAND_FTL_MAX_LOG_BLOCKS 4096u Maximum number of logical blocks that can be
managed by FTL module. The value of this
constant can be changed as per the
requirement. For example, if the driver is used
with a NAND device that has only 2048 blocks,
then this constant can be set to 2048.

PSP_NAND_FTL_MAX_PHY_BLOCKS 4096u Maximum number of physical blocks that can be
managed by FTL module. The value of this
constant can be changed as per the
requirement. For example, if the driver is used
with a NAND device that has only2048 blocks,
then this constant can be set to 2048.

14.4.2 Nand Driver Data types

14.4.2.1 PSP_nandType - The PSP_nandType enumerated data type specifies the types of
NAND devices supported by the NAND driver. Following table lists the values of the
data type.

Type Description
PSP_NT_NAND Device type is NAND device

PSP_NT_ONENAND Device type is OneNAND device (not supported)

PSP_NT_INVALID Device type is unknown

14.4.2.2 PSP_NandOpMode - The PSP_NandOpMode enumerated data type specifies the
mode of operation in which the nand driver will be used. Following table lists the
values of the data type.

Type Description
PSP_NAND_OPMODE_POLLED Polled mode of operation

PSP_NAND_OPMODE_INTERRUPT Interrupt mode of operation (not supported)

PSP_NAND_OPMODE_DMAINTERRUPT DMA mode of operation

Page 142 of 145

OMAPL137 BIOS PSP User Guide

14.4.3 Nand Driver Data Structures

14.4.3.1 PSP_nandDeviceInfo - The PSP_nandDeviceInfo data structure specifies the device
organization of the NAND device. Following table lists the elements of this data
structure.

Members Description
vendorId Vendor/Manufacturer/Maker ID of NAND device

deviceId Device ID of the NAND device

pageSize Size of each page

pagesPerBlock Number of pages per block

numBlocks Number of blocks in the NAND device

spareAreaSize Size of spare area of each page

dataBusWidth Data bus width of the NAND device

14.4.3.2 PSP_nandDeviceTiming - The PSP_nandDeviceTiming data structure specifies the
timing characteristics of the NAND device. Following table lists the elements of this
data structure.

Members Description
vendorId Vendor/Manufacturer/Maker ID of NAND device

deviceId Device ID of the NAND device

writeSetup Write setup time in ns

writeStrobe Write strobe time in ns

writeHold Write hold time in ns

readSetup Read setup time in ns

readStrobe Read strobe time in ns

readHold Read hold time in ns

turnAround Turnaround time in ns

14.4.3.3 PSP_nandConfig - The PSP_nandConfig data structure specifies parameters for
initializing and configuring the NAND driver. Following table lists the elements of this
data structure.

Members Description
inputClkFreq EMIF input clock frequency for calculating the timing

values for the EMIF

nandType Type of NAND flash. (NAND or OneNAND)

opMode Data transfer mode used by the NAND driver.
Supported data transfer modes are polled and EDMA
mode

eraseAtInit If TRUE, enables erase of the complete NAND flash
during initialization

Page 143 of 145

OMAPL137 BIOS PSP User Guide

protectedBlocks Number of protected blocks that are not mapped as
logically available storage area

hEdma EDMA driver handle use in EDMA operating mode

edmaEvtQ EDMA event queue number to be used in EDMA data
transfer mode

nandDevInfo NAND Device organization information

nandDevTiming NAND device timing information
pscPwrmEnable Boolean flag to enable (TRUE) or disable (FALSE) any

power management in the driver

14.4.4 Polled Mode

The configurations required for polled mode of operation are:

Init configuration opMode should be set to PSP_NAND_OPMODE_POLLED. The EDMA
handle can be NULL in this mode of operation.

14.4.5 DMA Interrupt Mode

The configurations required for DMA Interrupt mode of operation are:

Init configuration opMode should be set to PSP_NAND_OPMODE_DMAINTERRUPT.
Also the handle to the EDMA driver, hEdma, and the event queue number should be
passed by the application.

14.5 Control Commands
The PSP_nandIoctlCmd enumerated data type specifies the IOCTL commands
supported by the NAND driver. When using NAND driver via File system or using
RAW mode of operation via Block Media driver, use block media API
PSP_blkmediaDevIoctl() to send control commands to NAND driver. Note that the
command should be one of the enumerations PSP_nandIoctlCmd added with
PSP_BLK_IOCTL_MAX. Following table describes some of important the control
commands, for a comprehensive list please refer the IOCTL defined in psp_nand.h.
Following table lists the values of the data type:

Command Arguments Description

PSP_NAND_IOCTL_GET_NAND
_SIZE

Uint32 * Determine the usable number of
logical sectors in the device

PSP_NAND_IOCTL_GET_SECT
OR_SIZE

Uint32 * Determine the page size of the
device

PSP_NAND_IOCTL_SET_EVEN
TQ

Uint32 * Set the EDMA event queue for
EDMA mode data transfer

PSP_NAND_IOCTL_ERASE_BL
OCK

Uint32 * Erase a logical block

PSP_NAND_IOCTL_GET_OPMO
DE

Uint32 * Returns the current operation
mode of NAND driver.

PSP_NAND_IOCTL_GET_DEVI
CE_INFO

PSP_nandDevic
eInfo *

Returns the device details.

Page 144 of 145

OMAPL137 BIOS PSP User Guide

14.6 NAND Driver APIs
Following sections explain the use of parameters of NAND calls in the context of PSP
driver. Only PSP specific requirements are covered below.

14.6.1 PSP_nandDrvInit

Parameter
Number

Parameter Specifics to PSP

1 config Configuration parameters of type
PSP_nandConfig * is passed.

14.6.2 PSP_nandDrvDeInit

Parameter
Number

Parameter Specifics to PSP

1 Void None

14.7 Sources that need re-targeting

14.7.1 ti/pspiom/cslr/soc_OMAPL137.h (soc specific header file):

This file contains target (SoC) specific definitions. In most cases, changing the values
for the SoC specific details done here should suffice. However, if there are major
changes in the hardware instance then the driver file may be needed to change.

14.8 EDMA3 Dependency
NAND driver relies on EDMA3 LLD driver to move data from/to application buffers to
peripheral; typically EDMA3 driver is PSP deliverable unless mentioned otherwise.
Please refer to the release notes that came with this release. Please ensure that
current PSP release is compliant with version of EDMA3 driver being used.

14.8.1.1 Used Paramset of EDMA 3
PSP driver uses one paramsets of EDMA3; if there are no paramsets are available the PSP
driver creation would fail. These paramsets are used through the life time of PSP driver.

14.9 Known Issues
Please refer to the top level release notes that came with this release.

14.10 Limitations
Please refer to the top level release notes that came with this release.

14.11 NAND Sample applications

14.11.1 Dma mode sample

14.11.1.1 Description:

This sample demonstrates the use of the Nand driver in DMA mode.

The NAND driver configures I2C statically in nand.tci file inside
platforms\evmOMAPL137 folder. This file can be directly imported into an
application’s tcf script.

The nandSample.tcf file contains the remaining BIOS configuration.

Page 145 of 145

OMAPL137 BIOS PSP User Guide

The echo() task exercises the nand driver. The configureNand function inside the
platform file takes care of configuring the pin mux (for nand and I2C) and select
NAND through I2C expander, if UI card is connected. Please refer to the platforms
section in this guide for more details.

The init function is nandStorageInit calls the edma3init, block media init and then the
nand init, which initializes the nand driver.

The edma3init() initializes the EDMA3 driver and sets up edma handle. Please refer
to the platforms section in this guide for more details.

Please note that nandStorageInit and nandStorageDeinit functions provided by the
platform layer are for the ease for sample application writer. If the application wants
to addresss multiple media, then these APIS should not be used as block media and
edma initialization is required only once throughout the system.

14.11.1.2 Build:

 This sample can be built using

<ID>/packages/ti/pspiom/examples/evmOMAPL137/nand/edma/build/ccs3/nandSa
mple.pjt

14.11.1.3 Setup:

You need to connect a UI daughter card having NAND to the evmOMAPL137
platform.

14.11.1.4 Output:

When the sample application runs, it will demonstrate the usage of NAND in RAW
mode. The applications show the usage of various NAND and block media IOCTL and
then do the read/write operation on some sectors of the NAND device. The output
can be seen on the trace window.

