
Page 1 of 234

User Guide

C6748 BIOS PSP User Guide
01.30.00

Page 2 of 234

C6748 BIOS PSP User Guide

This page has been intentionally left blank.

Page 3 of 234

C6748 BIOS PSP User Guide

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make
corrections, modifications, enhancements, improvements, and other changes to its products
and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should
verify that such information is current and complete. All products are sold subject to TI’s
terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the
time of sale in accordance with TI’s standard warranty. Testing and other quality control
techniques are used to the extent TI deems necessary to support this warranty. Except
where mandated by government requirements, testing of all parameters of each product is
not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers
are responsible for their products and applications using TI components. To minimize the
risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted
under any TI patent right, copyright, mask work right, or other TI intellectual property right
relating to any combination, machine, or process in which TI products or services are used.
Information published by TI regarding third–party products or services does not constitute a
license from TI to use such products or services or a warranty or endorsement thereof. Use
of such information may require a license from a third party under the patents or other
intellectual property of the third party, or a license from TI under the patents or other
intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if
reproduction is without alteration and is accompanied by all associated warranties,
conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered
documentation.

Resale of TI products or services with statements different from or beyond the parameters
stated by TI for that product or service voids all express and any implied warranties for the
associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright ©2009, Texas Instruments Incorporated

Page 4 of 234

C6748 BIOS PSP User Guide

This page has been intentionally left blank.

Page 5 of 234

C6748 BIOS PSP User Guide

TABLE OF CONTENTS

1 Top level Information... 10
1.1 Introduction ..10
1.2 Supported Services and features..11
1.3 Naming Conventions...11
1.4 Installation Guide...12
1.5 Integration Guide...16
1.6 Power Management ..20

2 UART driver.. 23
2.1 Introduction ..23
2.2 Installation..23
2.3 Features ...25
2.4 Configurations ...26
2.5 Control Commands...28
2.6 Use of UART driver through GIO APIs ...29
2.7 Sources that need re-targeting ..30
2.8 EDMA3 Dependency ...30
2.9 Known Issues ..30
2.10 Limitations ..30
2.11 Uart Sample applications...31

3 I2C driver... 33
3.1 Introduction ..33
3.2 Installation..33
3.3 Features ...35
3.4 Power management Considerations ..36
3.5 Configurations ...36
3.6 Control Commands...39
3.7 Use of I2C driver through GIO APIs ..40
3.8 Sources that need re-targeting ..40
3.9 EDMA3 Dependency ...41
3.10 Known Issues ..41
3.11 Limitations ..41
3.12 I2c Sample application..41

4 GPIO driver .. 44
4.1 Introduction ..44
4.2 Installation..44
4.3 Features ...46
4.4 Power Management considerations ...47
4.5 Configurations ...48
4.6 Gpio Bank Event Numbers...49
4.7 Sources that need re-targeting ..49
4.8 Known Issues ..49
4.9 Limitations ..49

Page 6 of 234

C6748 BIOS PSP User Guide

4.10 GPIO Sample application...49

5 LCDC Raster Controller Driver .. 51
5.1 Introduction ..51
5.2 Installation..51
5.3 Features ...52
5.4 Power management Considerations ..54
5.5 Configurations ...54
5.6 Control Commands...57
5.7 Use of RASTER driver through SIO APIs ..58
5.8 Sources that need re-targeting ..59
5.9 EDMA3 Dependency ...59
5.10 Known Issues ..59
5.11 Limitations ..60
5.12 Raster Sample Application...60

6 LCDC LIDD Controller Driver .. 62
6.1 Introduction ..62
6.2 Installation..62
6.3 Features ...64
6.4 Configurations ...65
6.5 Control Commands...66
6.6 Use of LIDD driver through GIO APIs ..67
6.7 Sources that need re-targeting ..68
6.8 EDMA3 Dependency ...68
6.9 Known Issues ..68
6.10 Limitations ..68
6.11 LIDD Sample Application...69

7 SPI driver... 70
7.1 Introduction ..70
7.2 Installation..70
7.3 Features ...72
7.4 Power management Considerations ..73
7.5 Configurations ...73
7.6 Control Commands...76
7.7 Use of SPI driver through GIO APIs ..77
7.8 Use of GPIO as chip select...77
7.9 Sources that need re-targeting ..79
7.10 Use of GPIO as chip select...79
7.11 EDMA3 Dependency ...79
7.12 Known Issues ..80
7.13 Limitations ..80
7.14 Spi Sample applications ..80

8 PSC driver .. 83
8.1 Introduction ..83
8.2 Installation..83
8.3 Features ...84

Page 7 of 234

C6748 BIOS PSP User Guide

8.4 Use of PSC driver through module APIs...84
8.5 Sources that need re-targeting ..84
8.6 EDMA3 Dependency ...84
8.7 Known Issues ..84
8.8 Limitations ..84

9 Mcasp driver... 85
9.1 Introduction ..85
9.2 Installation..86
9.3 Features ...87
9.4 Power management Considerations ..91
9.5 IDLE Time Data Patterns ...92
9.6 Explicit control of IO PINS ...92
9.7 Clocking McASP..93
9.8 Clock Configuration (EVM C6748)...94
9.9 Configurations ...94
9.10 IO Request Format ...97
9.11 CACHE Control...98
9.12 Control Commands...98
9.13 Use of PSP driver through SIO APIs ..99
9.14 Timeline of Frame Sync, High Clock and or Bit Clock generation............... 100
9.15 Porting Guide... 101
9.16 Sources that need re-targeting .. 101
9.17 EDMA3 Dependency ... 101
9.18 How to support “NEW” data format... 101
9.19 Known Issues .. 101
9.20 Limitations .. 101
9.21 McASP Sample application... 101

10 Audio driver ... 103
10.1 Introduction .. 103
10.2 Installation.. 103
10.3 Features ... 104
10.4 Configurations ... 105
10.5 Control Commands... 106
10.6 Use of Audio driver through SIO APIs ... 106
10.7 Sources that need re-targeting .. 107
10.8 EDMA3 Dependency ... 107
10.9 Known Issues .. 107
10.10 Limitations .. 107
10.11 Audio Sample Application .. 108
10.12 Dependencies .. 108

11 AIC31 CODEC driver ... 111
11.1 Introduction .. 111
11.2 Installation.. 111
11.3 Features ... 112
11.4 Configurations ... 113

Page 8 of 234

C6748 BIOS PSP User Guide

11.5 Control Commands... 114
11.6 Use of AIC31 driver through SIO APIs... 115
11.7 Sources that need re-targeting .. 116
11.8 EDMA3 Dependency ... 116
11.9 Known Issues .. 116
11.10 Limitations .. 116

12 BLOCK MEDIA driver .. 117
12.1 Introduction .. 117
12.2 Installation.. 117
12.3 Configurations ... 119
12.4 Block media driver API’s.. 121
12.5 Use of Block media driver for RAW application interface 124
12.6 Use of Block Media driver for File System Interface 127
12.7 Sources that need re-targeting .. 127
12.8 EDMA3 Dependency ... 127
12.9 Known Issues .. 128
12.10 Limitations .. 128
12.11 Block Media Sample application.. 128
12.12 Dependencies .. 128

13 MMCSD driver... 131
13.1 Introduction .. 131
13.2 Installation.. 131
13.3 Features ... 132
13.4 Configurations ... 133
13.5 Power Management Implementation... 134
13.6 Control Commands... 135
13.7 MMCSD Driver APIs .. 137
13.8 Sources that need re-targeting .. 137
13.9 EDMA3 Dependency ... 138
13.10 Known Issues .. 138
13.11 Limitations .. 138
13.12 MMCSD Sample applications .. 138

14 NAND driver ... 140
14.1 Introduction .. 140
14.2 Installation.. 140
14.3 Features ... 142
14.4 Configurations ... 142
14.5 Power Management Implementation... 145
14.6 Control Commands... 146
14.7 NAND Driver APIs... 146
14.8 Sources that need re-targeting .. 147
14.9 EDMA3 Dependency ... 147
14.10 Known Issues .. 147
14.11 Limitations .. 147
14.12 NAND Sample applications .. 147

Page 9 of 234

C6748 BIOS PSP User Guide

15 McBSP Driver.. 149
15.1 Introduction .. 149
15.2 Installation.. 149
15.3 Features ... 151
15.4 Power management Considerations .. 153
15.5 IDLE Time Data Patterns ... 154
15.6 Clock Configuration (EVM C6748)... 154
15.7 Configurations ... 155
15.8 CACHE Control... 156
15.9 Control Commands... 156
15.10 Use of McBSP driver through SIO APIs .. 157
15.11 Porting Guide... 158
15.12 Sources that need re-targeting .. 158
15.13 EDMA3 Dependency ... 158
15.14 Known Issues .. 158
15.15 Limitations .. 158
15.16 Mcbsp Sample application ... 158

16 SATA driver .. 160
16.1 Introduction .. 160
16.2 Installation.. 160
16.3 SATA Sample applications ... 162
16.4 Known Issues .. 163
16.5 Limitations .. 163

17 VPIF driver... 164
17.1 Introduction .. 164
17.2 Installation.. 165
17.3 Features ... 167
17.4 VPIF Configurations .. 171
17.5 FVID Configurations.. 184
17.6 EDC Configurations... 212
17.7 Power Management Implementation... 231
17.8 EVM Initialization ... 231
17.9 Supporting “NEW” resolution ... 232
17.10 EDMA3 Dependency ... 233
17.11 Known Issues .. 233
17.12 Limitations .. 233
17.13 Sample Application... 233

Page 10 of 234

C6748 BIOS PSP User Guide

1 Top level Information

1.1 Introduction

This chapter introduces the C6748 BIOS PSP to the user by providing a brief
overview of the purpose and construction of the C6748 BIOS PSP, along with
hardware and software environment specifics in the context of the C6748 BIOS PSP
deployment.

1.1.1 Overview

The C6748 BIOS PSP is aimed at providing fundamental software abstractions for on-
chip resources and plugs the same into DSP/BIOS operating system so as to enable
and ease application development by providing suitably abstracted interfaces.

1.1.2 Terms and Abbreviations

API Application Programming Interface

CSL TI Chip Support Library – primitive h/w abstraction.

IP Intellectual property

ISR Interrupt Service Routine

OS Operating System

ID Installation Directory

MMC Multi-media Card

SD Secure Digital

RTFS/ERTFS File System

BIOSUSB DSP/BIOs based USB software stack from TI

1.1.3 References

1 SPRUFK5 C6748 SoC reference Guide

2 SPRU616 DSP/BIOS Device Driver Developer's Guide

3 SPRU403 TMS320C6000 DSP/BIOS Application Programming Interface

4 SPRU423 TMS320 DSP/BIOS User’s Guide

Page 11 of 234

C6748 BIOS PSP User Guide

1.2 Supported Services and features

The C6748 BIOS PSP provides the following:

 Device drivers for UART, I2C, SPI, McASP, McBSP, PSC, MMCSD, GPIO, LCDC
LIDD, LCDC Raster, SATA, NAND, VPIF and devices specific to the EVM like
AIC31 codec, Tvp5147 codec and Adv7343 codecs.

 Block Media Interface for storage drivers like MMCSD, NAND and SATA.

 Sample applications that demonstrate use of drivers for UART (loop back &
Echo Test), I2C (writes to on board I2c Expander), SPI (Serial Flash), McASP
(Plays a tone, EVM to EVM communication), McBSP (EVM to EVM
communication), MMCSD (Read/Write to the storage devices), NAND
(Read/Write to the storage devices), LCDC Raster (Display RGB stripe with
scrolling line), VPIF (BT loopback and raw loopback).

 rCSL and Examples for selected peripherals

1.2.1 System Requirements

The following products are required to be installed prior to using the C6748 BIOS
PSP:

 EDMA 3 LLD – This package (C6748 BIOS PSP) is compatible with EDMA 3
LLD versioned 01.11.00.02 or above.

 DSP-BIOS versioned 5.41.02.14

 CCS 3.3.80.11 (service release 10)

 CCS 4.0.0.16 or higher (optional)

 Code Generation Tools 6.1.9

 XDS 510 USB Emulator (Optional) – EVM has on board emulator

 EVM 6748 beta Board

 ERTFS File System (Optional). This is required if one wants to maintain a
filesystem on Storage Media. Same can be downloaded from following link:
http://software-
dl.ti.com/dsps/dsps_registered_sw/sdo_sb/targetcontent//bios_file_system/index.html

1.3 Naming Conventions
The DSP/BIOS 5 PSP drivers in this release were written based on already existing
DSP/BIOS 6 PSP drivers. As such, it has been decided to maintain the same
DSP/BIOS 6 naming schema for constants and modules in the driver code for
consistency.

This means that module names for drivers may not be all upper case, but would
have the first letter of the module name capital, followed by lower case letters. For
example, the GPIO module is named:

Gpio

Constants for the Gpio module are all upper case, except that they are preceded by
the module name in which they are defined. The module name which precedes is
cased as described previously. One example of a Gpio module constant is:

Gpio_NUM_BANKS

This is slightly different than the normal, all uppercase naming convention found in
DSP/BIOS 5, but it was done so in order to lessen confusion in maintenance and
usage of code.

Page 12 of 234

C6748 BIOS PSP User Guide

1.4 Installation Guide

This chapter discusses the C6748 BIOS PSP installation, how and what software and
hardware components to be availed in order to complete a successful installation
(and un-installation) of the C6748 BIOS PSP.

1.4.1 Installation and Usage Procedure

1.4.1.1 Installation procedure for DSP/BIOS

1. Install the products mentioned in system requirements sections, as per
instructions provided along with the products. Please note that sometimes the
code composer studio installation would also contain the installation for other
components (like DSP/BIOS and Code gen tools) and might install these
automatically.

2. Ensure that the BIOS_INSTALL_DIR in the environment variable is set to
appropriate DSP/BIOS version.

3. Install the PSP package (BIOSPSP_xx_yy_zz_bb_Setup.exe) using the self
extracting installer.This will be installed at the user specified location and an
environment variable “BIOS5PSP_INSTALL_DIR” will be created set to the same
path.

4. Please note that this installer in an integrated delivery package and it contains
device drivers and examples for more the one SoC. You could choose the custom
install option during installation to get options to choose the SoC parts you are
interested to have device driver and their examples for

5. Install EDMA-3 LLD Device Driver into preferred drive / folder

6. Ensure that environment variable ‘EDMA3LLD_BIOS5_INSTALLDIR’ is set to the
packages folder of the EDMA3 installation. (e.g. If the EDMA3 LLD Driver is
installed into “c:\edma3_lld_xx_yy_zz\” then ensure that EDMA install directory
environment variable is as follows: EDMA3LLD_BIOS5_INSTALLDIR
=c:\edma3_lld_xx_yy_zz\packages)

7. Optionally, if user wants to use RTFS File system install the Files system to
preferred location. Ensure that environment variable ‘RTFS_INSTALL_DIR’ is set
to the RTFS installation directory. Please refer to RTFS user guide for more detail.

8. For building the downloadable images refer to section 1.4

9. Download the executable image of the required application onto your platform
using CCS.

10.Run the program

Please see the help on package locations and API information help that are
generated from doxygen, found under the docs folder for each driver.

1.4.1.2 Un-Installation

1. Uninstall the PSP package by using the uninstall.exe in the package directory.

2. Un-install the products (listed in system requirements) as per instructions
provided with the product(optional and at user’s discretion)

 EDMA3 LLD Device Driver un-installation

 CCS & DSP/BIOS Product un-installation

 Code Generation tools uninstallation

Page 13 of 234

C6748 BIOS PSP User Guide

1.4.2 PSP Component Folder

This section details the files and directory structure of the installed C6748 BIOS PSP
in the system. A view graph of the actual directory tree (as seen in the final deployed
environment is inserted here for clarity.

1.4.2.1 Top level PSP Directory structure:

Figure 1: BIOS PSP Top level directory structure

The sections below describe the folder contents.

pspdrivers_xx_xx_xx_xx
Contains device drivers and other PSP components. Top level
installation directory

docs
Contains release notes and users’ guide for this PSP package.

cslr
Contains the register level chip support for C6748 and usage
examples.

examples
Contains the sample applications for drivers provided as part of this
package

platforms
Contains platform specific modules like codec drivers, interface
modules etc., which may be specific to the EVM/Platform

All drivers are organized under ti/pspiom directory under their individual directories.
For example, the UART driver is placed under ti/pspiom/Uart.

Page 14 of 234

C6748 BIOS PSP User Guide

1.4.2.2 Driver Directory structure:

Each driver directory (ti/pspiom/<peripheral>) is further organized as
follows:

Figure 2: C6748 PSP driver directory structure

docs
Contains peripheral specifically documentation like Design
documentation etc.

build
Contains the CCS3 and CCS4 project files required for building the
library.

lib
Contains generated driver library file(s)

src
Contains the source file(s) for the BIOS PSP driver module

1.4.2.3 examples Directory structure:

The example applications for drivers for each EVM platform are arranged
under (ti/pspiom/examples/<evmName> as follows:

Figure 3: C6748 PSP driver sample application directory structure

evm6748

Contains the EVM/platform specific examples. Further the each sample
application is arranged in its own folder as below:

edma (or interrupt)

Contains specific files to demonstrate EDMA (or Interrupt) mode of
operation

build

Contains CCS3 project specific files
src

Contains the example application source files

Page 15 of 234

C6748 BIOS PSP User Guide

1.4.2.4 platforms Directory structure:

Each platform related specific driver modules are further organized as:

Figure 4 Platforms directory structure

Any EVM dependent driver that could be used across EVMs is kept directly
under the platforms directory (e,g. codec) and all other EVM specific software
content is kept under the <evmName> folder. Typical such candidate is
evmInit code and audio driver that encapsulates codec on EVM, audio
peripheral on the SOC etc.

codec
Contains codec driver related docs, build files, library files and source
files

<evmName>
Contains very EVM specific content

<evmName>\audio
Contains audio interface driver related docs, build files, library files and
source files

<evmName>\lib
Contains generated EVM specific initialization (evmInit) library file(s)

<evmName>\src
Contains EVM specific initialization routines source file(s)

<evmName>\build
Contains EVM specific initialization (evmInit) library project files and
CCS build files

Page 16 of 234

C6748 BIOS PSP User Guide

1.5 Integration Guide

This chapter discusses the C6748 BIOS PSP package usage. As part of the PSP package, a
sample application is provided to check the basic functionality and usage for each of the
device/driver.

1.5.1 Building the PSP Sample Applications

The PSP package contains separate sample applications for each of the DSP/BIOS
based drivers provided as part of the package (except PSC). These sample
applications can be built using CCS v3.3 project files. These project files can be
found in the build folder of the respective sample application in the examples
directory (ti\pspiom\examples\<evmName>\<peripheral>).

Also the PSP package can be compiled using CCS4. The project files for compiling the
modules will be found in the build folder of the respective module.

1.5.2 BIOS PSP EVM Library Module

1.5.2.1 Description

The sample applications available in the package demonstrate the usage of the BIOS
PSP drivers for DSP BIOS 5.33.x on EVM C6748 platform. For successful operation of
the applications, some basic initialization (ex., enable the LPSC (clock) for the
peripheral, configuring the pin multiplexers for the peripherals used etc) needs to
performed. These initialization steps however are dependent on the SoC specifically.

Apart from this, the sample application may also have to do tasks specific to EVM on
which it is intended to run. Hypothetically, a device with which the sample
application interacts, might be needed to be enabled/selected (multiplexed on the
EVM) via an I2C expander, or a configurable switch.

The above mentioned initialization sequence, though necessary for a sample
application to run successfully, become too much of a code information for a first
time user of the sample application who would just like to have a look at the code
and get a feel of the driver usage example.

Hence, in order to abstract the platform (EVM) specific initialization, these routines
are organized as a separate library evmInit.lib. This library has the routines for the
platform/EVM specific tasks. This helps in making the actual sample application
simpler.

The platform directory has EVM specific code required by each module. All the EVM
related information is placed inside file <module>_evmInit.c. This contains the code
for any driver creation function required by the module, PINMUX settings for the
module, any configuration required to be done by using the driver. This folder also
contains an entry in the configuration (*.tci) file required for the creation of
“dependency” drivers which will be used by that sample application.

NOTE:

Please note that all the routines used here are EVM specific and will need to be
modified by the system integrator according to the actual EVM used and/or the
system use case.

Page 17 of 234

C6748 BIOS PSP User Guide

The evmInit library files can be found under
<ID>\packages\ti\pspiom\platforms\evmXXX and contain:

1. Platform specific initialization routines in xxx_evmInit.c

2. Platform specific init configuration files in xxx.tci

3. Platform library project file evmInit.pjt

4. Platform initialization library evmInit.lib
Note: MMCSD and NAND are not IOM based drivers, so a file named
<module>_startup is added for initializing these drivers. The routines in this file
initialize the EDMA, Block Media and the specific modules and would be called first
before any other function from either main or the task.

1.5.2.2 Building the EVM library module

 The CCS3.3 based pjt

(packages\ti\pspiom\platforms\evm6748\build\ccs3\evmInit.pjt) could be
used to build the evmInit library.

 The CCS4 based pjt

(packages\ti\pspiom\platforms\evm6748\build\ccs4\) could be used to build
the evmInit library.

1.5.2.3 Using the EVM library module

 Include the required <ID>\packages\ti\pspiom\platforms\evmXYZ\xxx.tci file
in the application tcf file. This file will be required if the platform library for
the driver under consideration uses and creates device instances (like in the
case if I2C driver is need for I2C IO expander programming etc).

 Include the <ID>\packages\ti\pspiom\platforms\evmXYZ\xxx_evmInit.h file.
This will provide the prototypes/declarations

 Link the ti.pspiom.platforms.evmXYZ.evmInit.a674
 Call the required EVM configuration function in the application (depending on

the peripheral to use).

1.5.2.4 Porting for another EVM

Please note the current content of this package was targeted for the TI C6748 EVM.
In case the package is intended for another custom EVM, the code that needs
retargeting is <ti\pspiom\platforms>

 Any new codec driver could be kept at root of “platforms” folder.

 New folder in the name of custom EVM can be created under “platforms
folder”

 Duplicate the contents of the “EVM6748” into new folder.

 Change the content of the xxxxinit.c files for appropriate PINMUX, EVM MUX,
I2C GPIO expander etc.

1.5.3 Building the BIOS PSP Driver Modules

BIOSPSP drivers and sample application provide support for both CCS3 and CCS4
build environments. The two build setup/project files are located in the build folder of
the respective driver/sample application directories. Each of the projects are
contained in ccs3 and ccs4 directories in the build folder.

Page 18 of 234

C6748 BIOS PSP User Guide

Upon successful installation the BIOSPSP installer creates an environmental variable
“BIOS5PSP_INSTALL_DIR” which can be used to refer to the installation directory of
BIOSPSP package. This is supposed to provide for CCS3 build environments. CCS4
build environments should use the workspace and macros concept as described
below.

 CCS3 build setup

Please build individual drivers using CCS v3.3 pjt files provided.

 CCS4 build setup

The project in the CCS4 build folder needs to be imported via CCS4 into a
workspace. Once imported, a workspace specific macro “BIOS5PSP_INSTALL_DIR” is
created for the workspace use. This is used to refer to the linked
source/configuration files in the project. Since this is a relative path, this resolves
into the actual installation directory once imported into the workspace.

If a user has not imported the drivers/sample application, then the install directory
macro is not created in the workspace. In such a case the user needs to manually
create this macro in the workspace.

Also, the user may have to update the versions for DSP/BIOSTM, Code generation
tools etc for the workspace created. Also, ensure that the settings for the project like
output executable/library name etc are retained after switching to the new versions.

1.5.4 BIOS drivers sample Application:

UART – The sample application demonstrates the use of the UART driver by
performing reading and writing of messages and input characters from and to serial
terminal of a host PC. (Tera Term or hyper terminal could be used as a serial
terminal on Host PC)

I2C – The sample application demonstrates the use of the I2C driver by blinking the
LEDs that are connected to a I2C GPIO expander

SPI - The sample application demonstrates the use of the SPI driver by writing 64
bytes of known data into serial flash, then reading back the written data and
validating it.

McASP/Audio – The sample applications demonstrates the use of the McASP driver
by loopback audio capture (the audio fed through Line-in stereo pin from an audio
source and playback the audio through the LINEOUT pin on a speaker or
headphone).

Mcasp – This sample application demonstrates an EVM to EVM communication
example using Mcasp. A known pattern of data to transmit from a Mcasp and another
McASP receives the data and compares the same and prints the result.

MMCSD – The sample applications demonstrates the use of the MMCSD driver using
the RAW interface by showing the usage of various IOCTLS, writes to the media and
verify the data written by reading it back. For using the media with File system refer
to the sample application provided with the File system package. Find the details of
this filesystem package in the System requirement section.

Page 19 of 234

C6748 BIOS PSP User Guide

NAND – The sample applications demonstrates the use of the NAND driver using the
RAW interface by showing the usage of various IOCTLS, writes to the media and
verify the data written by reading it back. For using the media with File system refer
to the sample application provided with the File system package. Find the details of
this filesystem package in the System requirement section.

LCDC Raster – The sample application demonstrates the use of the LCDC Raster
controller driver by displaying a Video made up of RGB stripe image, with a line
scrolling on it.

LCDC LIDD – The sample application demonstrates the use of the LCDC LIDD
controller driver by displaying a welcome message.

McBSP – The sample application demonstrates the use of the McBSP driver via EVM
to EVM master/slave communication.

VPIF – The sample application demonstrates the use of the VPIF driver by capturing
and displaying video in NTSC and RAW modes using different VPIF channels.

Note: Please note that the HWI numbers used for ECM groups 0,1,2,3 are HWI7,
HWI8, HWI9 and HWI10 and this would remain common across the sample
application of all peripherals.

1.5.5 CSL Layer usage example

Sample code is provided to demonstrate the usage of CSL Register Layer with
selected peripherals examples. The sample application building for CSL examples are
similar to that of the driver sample applications explained above. For more
information on CSL layer usage, please refer to the user guide located at,
pspdrivers_xx_yy_zz\packages\pspiom\cslr\docs\cslr_userguide.doc.

Page 20 of 234

C6748 BIOS PSP User Guide

1.6 Power Management

The PSP drivers support various power management features. The following sections
explain in detail the power management features supported by the PSP drivers.

1.6.1 Module clock gating

The drivers implement power management by means of gating respective LPSC
modules. This is implemented by enabling the LPSC as long as the driver has
requests/packets pending to be completed and disabling the PSC when there are no
requests/packets pending to be completed.

The implementation uses DSP/BIOSTM PWRM module APIs or BIOSPSP PSC driver
APIs depending upon the configuration by the user.

The user can configure the driver to either use DSP/BIOSTM PWRM module APIs by
enabling BIOS_PWRM_ENABLE compiler switch, or to use the BIOSPSP PSC driver
APIs by disabling the BIOS_PWRM_ENABLE compiler switch. That is, when
BIOS_PWRM_ENABLE compiler switch is used the drivers shall use the DSP/BIOSTM

PWRM API calls. If BIOS_PWRM_ENABLE compiler switch is not used, then the
BIOSPSP PSC driver APIs shall be used.

The user shall have to include the following two lines in the application TCF file for
DSP/BIOSTM based power management.

bios.PWRM.ENABLE = 1;

bios.PWRM.RESOURCETRACKING = 1;

Also, if a user wishes not to enable any power management functionality at all in the
driver, one could do so by supplying the “pscPwrmEnable” device/instance
parameter as FALSE during device creation. In this case the PSC is enabled once
during driver instantiation(mdBindDev()) and disabled once during driver instance
deletion(mdUnbindDev()).

Please note that DSP/BIOSTM based power management support is currently for
C6748 and OMAPL138 based platform only and only BIOS power
management must be used for these platforms.

1.6.2 DVFS

On the C6748 SoC, dynamic changes to the operating voltage and frequency of the
CPU are possible. This is called V/F scaling. Since power usage is linearly proportional
to the frequency and quadratically proportional to the voltage, using the V/F scaling
can result in significant power savings.

The application can request the DSP for a transition to a new V/F set point whenever
it wants to enter a low power state. Whenever the application requests a DVFS
setpoint change, the driver internally takes care to suspend the pending IO and
resume the same when the V/F scaling is completed. It also takes care to reprogram
the various clock dividers so that the actual programmed peripheral IO clock is not
affected by the transition to the new setpoint.

Note:

1. The driver shall do the following with respect to the implementation aspects of
PWRM “events”

a. Register notification for PWRM events
b. Register constraints for non-plausible power states
c. Perform required operations on notification like deferring the completion

of PWRM event if the IO is in progress, stalling subsequent I/O pending

Page 21 of 234

C6748 BIOS PSP User Guide

inside the driver until the event is complete, re-configuring clocks (if
required) after the event is complete and restarting the IO.

2. The application shall only need to use the PWRM module APIs for a required
event. Please note that the pscPwrmEnable should be set to TRUE for driver to
respond to the PWRM API calls and perform the required functionality inside the
driver

3. All peripheral I/O clock rates may not be possible at all the setpoints available in
the system. There could be prescalar programming constraints. In such cases
during the PWRM DVFS event notifications, the driver shall (re)register the
constraints for the particular non-plausible set point and the driver shall not allow
switching to this setpoint. Hence it is the system integrators responsibility to
decide on proper setpoints vis-à-vis the IO rates of the system

4. Some drivers may not support power management features in the some modes
of operation. Please refer to driver specific section on power management for
details

5. If a driver is not power management aware (pscPwrmEnable = FALSE) and the
system still performs power management then the driver shall not be able to
perform any related functionality during/after the transition PWRM events and the
system behavior is unpredictable.

1.6.3 Sleep States

The driver also supports the below mentioned sleep states for the power
management and low power states.

1. STANDBY - The GEM is put into a power-saving standby mode. Its clock is
turned off at the GEM boundary. This mode has a low latency for wakeup.

2. SLEEP - In addition to putting the GEM into standby, the core voltage is
reduced, and the PLLs are slowed down or bypassed.

3. DEEPSLEEP - In addition to the actions for SLEEP, the GEM clock is gated
up-stream at the power sleep controller, memories are put into retention,
and PLLs are powered down.

The application can use the PWRM provided API’s to request the DSP to transition to
the required sleep state.

The wakeup events for the sleep states are as given below

1. STANDBY – any enabled interrupt will bring the system out of STANDBY.

2. SLEEP – any enabled interrupt will bring the system out of SLEEP.

3. DEEPSLEEP – only RTC ALARM interrupt (on the OMAPL138 EVM) will bring
the system out of DEEPSLEEP.

Please refer to the notes given below for the special considerations to be taken when
using the power management features.

The application can request for the V/F scaling and the sleep states to be enabled by
supplying the “pscPwrmEnable” as TRUE during the device creation. Also it may be
required to supply the “pllDomain” in which the device is configured.

The user shall have to include the following two lines in the application TCF file for
DSP/BIOSTM based power management features of V/F and sleep states to be
enabled

bios.PWRM.ENABLE = 1;

bios.PWRM.SCALING = 1;

Page 22 of 234

C6748 BIOS PSP User Guide

The driver internally takes care to suspend any IO pending in the driver and then
resume the same when the V/F scaling is completed successfully.

Also note that the driver should be compiled with the “BIOS_PWRM_ENABLE”
option enabled for the above power management features to be supported.

Note:

 The “pllDomain” parameter is used to notify the driver as to which PLL te
device is based of. This is required to appropriately perform the power
management related functions in the driver. The “pllDomain” is an enum
defined in the driver header files. pllDomain_0 should be passed if the device
for which the driver is being instantiated is based off PLL0 and pllDomain_1
should be passed of the device for which the driver is being instantiated is
based off PLL1. “pllDomain_0” and “pllDomain_1” correspond to
“PWRM_CPU” and “PWRM_PER” type of events respectively. For example, if
the pllDomain parameter is set to “pllDomain_0”, then the driver shall
responed to PWRM_CPU type events. Also, in certain cases the device may
be based off external clocks – ASYNC domains. Then in this case the
“pllDomain” must be set to “pllDomain_NONE”. This important to avoid
unneccessary scaling etc inside the driver.

 The V/F scaling and sleep states should be supported by both the underlying
SoC and also by the BIOS PWRM module. The BIOS PWRM module is
currently supported only on the C6748 and OMAPL138 platforms only.

 The C6748 libraries need to be compiled with the preprocessor
“BIOS_PWRM_ENABLE” enabled mandatorily, otherwise the compilation of
the libraries will fail.

 One can refer to DSP/BIOSTM API reference guide for PWRM APIs available.

 Additionally, SLEEP and DEEPSLEEP states impose certain constraints on the
system under consideration. Please refer to “Known issues” in DSP/BIOS
release notes located at the DSP/BIOS 5.41.02.14 installation directory.

 As a jump start one can refer to some basic examples for application level
implementation of power management (sleep/vf scaling) found at
“packages\ti\bios\examples\advanced” in the DSP/BIOS installation
directory.

Page 23 of 234

C6748 BIOS PSP User Guide

2 UART driver

2.1 Introduction
This section is the reference guide for the UART device driver which explains the
features and tips to use them.

DSP/BIOS applications use the driver typically through APIs provided by BIOS
module GIO, to transmit and receive serial data. The following sections describe in
detail, procedures to use this driver and configure it. It is recommended to go
through the sample application to get familiar with initializing and using the UART
driver.

2.1.1 Key Features

 Multi-instance support and re-entrant driver

 Each instance supports a transmit channel and a receive channel

 Supports Polled, Interrupt and DMA Interrupt Mode of operation

2.2 Installation
The UART device driver is a part of BIOSPSP product for C6748 and would be
installed as part of product installation.

2.2.1 UART Component folder

On installation of BIOSPSP package for the C6748, the UART driver can be found at
<ID>\ ti\pspiom\uart\

As shown above, the uart folder contains several sub-folders, the contents of which
are described below:

 uart - The uart folder is the place holder for the entire UART driver. This
folder contains Uart.h which is the header file to be included by the
applications.

 build – contains CCS 3.3 / CCS 4 project file to build UART library.

 docs – Contains doxygen generated API reference.

 lib – Contains Uart libraries

 src – Contains Uart driver’s source code.

2.2.2 Build Options

The Uart library can be built using the CCS v3.3 project file located at
<ID>\packages\ti\pspiom\uart\build\C6748\ccs3\uart.pjt. This project file supports
the following build configurations.

It can also be built using the CCS v4 project files located at
<ID>\packages\ti\pspiom\uart\build\C6748\ccs4

IMPORTANT NOTE:

Page 24 of 234

C6748 BIOS PSP User Guide

All build configurations require environment variable
%EDMA3LLD_BIOS5_INSTALLDIR% to be defined. This variable must point to
“<EDMA3_INSTALL_DIR>\packages”.

Debug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines “-DUart_EDMA_ENABLE” to enable EDMA3 support in Uart driver. It
also contains “-i%EDMA3LLD_BIOS5_INSTALLDIR%” to find EDMA3 header
files.

iDebug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines “-DUart_EDMA_ENABLE” to enable EDMA3 support in Uart driver. It
also contains “-i%EDMA3LLD_BIOS5_INSTALLDIR%” to find EDMA3 header
files.

 Defines “Uart_DEBUGPRINT_ENABLE to enable Uart driver to LOG debug
messages.

Release:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines “-DUart_EDMA_ENABLE” to enable EDMA3 support in Uart driver. It
also contains “-i%EDMA3LLD_BIOS5_INSTALLDIR%” to find EDMA3 header
files.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

iRelease:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines “-DUart_EDMA_ENABLE” to enable EDMA3 support in Uart driver. It
also contains “-i%EDMA3LLD_BIOS5_INSTALLDIR%” to find EDMA3 header
files.

 Defines “Uart_DEBUGPRINT_ENABLE to enable Uart driver to LOG debug
messages.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

2.2.2.1 Required and Optional Pre-defined symbols

The Uart library must be built with an SOC specific pre-defined symbol.

“-DCHIP_C6748” is used above to build for C6748. Internally this define is used
to select a soc specific header file (soc_C6748.h). This header file contains
information such as base addresses of uart devices, their event numbers, etc.

The Uart library can also be built with these optional pre-defined symbols.

Page 25 of 234

C6748 BIOS PSP User Guide

Use -DUart_EDMA_ENABLE when building library to enable DMA support in Uart
driver. If this symbol is not defined edma specific code will get eliminated and the
driver can be used only in POLLED or INTERRUPT mode.

Use -DPSP_DISABLE_INPUT_PARAMETER_CHECK when building library to turn
OFF parameter checking. This symbol is defined for Release and iRelease profiles
by default in the CCS 3.3 pjts provided.

Use -DNDEBUG when building library to turn off runtime asserts. This symbol is
defined for Release and iRelease profiles by default in the CCS 3.3 and CCS 4 pjts
provided.

2.3 Features
This section details the features of UART and how to use them in detail.

2.3.1 Multi-Instance

The UART driver can operate on all the instances of UART on the EVM C6748.
Different instances may be specified during driver creation time, and instances 0
through 2 with corresponding device IDs 0 through 2 are supported, respectively.

These instances can operate simultaneously with configurations supported by the
UART driver. UART instances are created as follows:

1. Static creation – static creation is done in the “tcf” file of the application; the
allocation of device happens at build time. The UDEV module (UDEV.create) is
used during static configuration. An instance of the UDEV module at static
configuration time corresponds to creating and initializing an UART instance

2. Dynamic creation – Dynamic creation of an UART instance is done in the
application source files by calling DEV_createDevice(); this creation happens at
runtime.

UDEV.create and DEV_createDevice allow user to specify the following:

 iomFxns: Pointer to IOM function table. UART requires this field to be
Uart_IOMFXNS.

 initFxn: UART requires that the user call UART_init() as part of this initFxn.
Users can also directly hook in UART_init().

 device parameters: UART requires the user to pass an Uart_Params struct.
This struct must exist in the application source files and it must be initialized
very early as part of driver specific initFxn.

 deviceId to identify the UART peripheral. This parameter decides on the
instance to which this driver is binding. In case of static driver creation this
parameter needs to be modified at TCF/TCI files.

For more information on configuring UDEV and Uart, please refer to the Uart sample
application (included with this driver release), and the DSP/BIOS API Reference
(spru403o.pdf, included in your DSP/BIOS installation).

2.3.2 Each Instance as Transmitter and / or receiver

Each instance of the UART driver can be used for creating channels for transmit and
receive operation. This could be achieved by opening a stream Channel as an INPUT
channel and opening a stream Channel as an OUTPUT channel. The type of Channel
is specified while creating the channel (using GIO_create ()specify “IOM_OUTPUT”

Page 26 of 234

C6748 BIOS PSP User Guide

or “IOM_INPUT”). The configuration parameters are explained in the sections to
follow.

2.3.3 Support for baudrates greater than 115200

The UART driver does not impose a restriction configuring the UART peripheral for
baudrates greater than 115200 baud. However, when configuring for higher
baudrates, one needs to tweak the parameter rxThreshold and softTxThreshold
(detailed below in Uart_Params).

2.4 Configurations
Following tables document some of the configurable parameter of UART. Please refer
to Uart.h for complete configurations and explanations. Please refer the sample code
as reference to change the default parameter values from the application.

2.4.1 Uart_Params

This structure defines the device configurations, expected to supply while
instantiating the driver known as “devParams”.

Members Description

enableCache
This option is used if the driver should take care of
validating/invalidating the cache for the buffers
provided by the user.

fifoEnable Whether the HW FIFO for the device is to enabled

opMode Whether the UART driver should operate in Polled or
Interrupt or DMA Interrupt Mode

loopbackEnabled If the driver/device works in loopback mode

baudRate The baud rate to be set for the HW Instance

stopBits Number of stop bits for data transfer

charLen Data word length for Tx/Rx

parity Should Even/Odd parity or No parity should be used

rxThreshold FIFO data threshold for RX to raise a receive data
interrupt

fc This defines the type of flow control to be used and
the respective flow control parameter.

edmaRxTC/edmaRxTC EDMA TCs for transmit and receive

hwiNumber The hardware interrupt number assigned for UART
events

polledModeTimeout The data transfer timeout for polled mode of operation

softTxThreshold

This is a software parameter (not a hardware setting),
If this element is not equal to 1, then the number of
bytes requested to transmit for each IO request must
be multiple of this element.

pscPwrmEnable Boolean flag to enable (TRUE) or disable (FALSE) any

Page 27 of 234

C6748 BIOS PSP User Guide

power management in the driver

pllDomain Pll domain where the current device instance is
connected to.

softTxThreshold and rxThreshold

In case DMA transfer mode the generation of EDMA sync event from UART to
the EDMA peripheral in case of receive depends on the receive FIFO threshold level.
Once the reveive FIFO threshold is reached (so many bytes received into the
RXFIFO) the sync event to EDMA is generated and the EDMA transfer the bytes from
the FIFO to the destination buffer depending on the transfer parameters
programmed for this transfer. Similarly, for more flexibility in programming the
transmit operation softTxThreshold is added as a device parameter above. The
UART driver now programs the EDMA in AB sync mode. The B count for the EDMA
transfer parameter for receive is programmed equal to the “rxThreshold” and the
transmit B count is programmed equal to the “softTxThreshold”. The users can
tweak these parameters as required. However, there is one limitation while
setting the rxThreshold and softTxThreshold. If these are not equal to one,
then the data length should be integral multiples of these values. Else,
during receive remainder bytes (< rxThreshold) may not be sufficient to
trigger the EDMA event and during transmit the EDMA may not pick up the
remainder bytes from the buffer, since remainder bytes are not
programmed at all.

Apart from the instance parameters described above module wide constants declared
in Uart.h can be changed e.g Uart_TASKLET_PRIORITY. These constants apply to all
Uart instances.

Build options can also be added or removed to add/remove features. e.g –
DUart_EDMA_ENABLE.

2.4.2 Uart_ChanParams

Applications could use this structure to configure the channel specific configurations.
This is provided when driver channels are created (e.g. GIO_create)

Members Description

hEdma
The handle to the EDMA driver. Required only when operating
in DMA interrupt mode. Also, note that when operating in DMA
interrupt mode, -DUart_EDMA_ENABLE must be defined

Please note that the EDMA LLD driver supports multiple instances of the EDMA
hardware (2 in case of C6748). The handles to these instances will be valid after
calling the edma3init() API. The application should then appropriately pass the EDMA
handle via hEdma field above (hEdma[0] or hEdma[1]). If the application is
instantiating the driver for device instance number 0 and EDMA event from this
device instance are mapped to EDMA controller 0 then the application has to pass
hEdma[0].

Page 28 of 234

C6748 BIOS PSP User Guide

2.4.3 Polled Mode

The configurations required for polled mode of operation are:

Instance configuration opMode should be set to Uart_OpMode_POLLED. Additionally
the timeout parameter for the data transfer operation can be configured as required.
For example, polledModeTimeout could be set to 1000000 ticks, while the default
value is BIOS_WAIT_FOREVER.

2.4.4 Interrupt Mode

The configurations required for interrupt mode of operation are:

Instance configuration opMode should be set to Uart_OpMode_INTERRUPT.
Additionally the hwiNumber assigned by the application for the UART CPU events
group should be passed, so that the driver can enable proper interrupts. It is
recommended to start from the sample application and modify it further to meet the
need of the actual application.

2.4.5 DMA Interrupt Mode

The configurations required for DMA Interrupt mode of operation are:

Instance configuration opMode should be set to Uart_OpMode_DMAINTERRUPT.
Additionally the hwiNumber assigned by the application for the UART CPU events
group should be passed, so that the driver can enable proper interrupts. The driver
must also be built with –DUart_EDMA_ENABLE. Also, as part of chanParams, the
handle to the EDMA driver, hEdma, should be passed by the application.

2.5 Control Commands
Following table describes some of important the control commands, for a
comprehensive list please refer the IOCTL defined in Uart.h

Command Arguments Description

Uart_IOCTL_SET_BAUD Uart_BaudRate *
Configures the baud rate for
the UART instance

Uart_IOCTL_SET_STOPB
ITS

Uart_NumStopBits
*

Configures the number of
stop bits for the instance

Uart_IOCTL_SET_DATAB
ITS

Uart_NumStopBits
*

Configures the word length
for transmission and
reception

Uart_IOCTL_SET_PARIT
Y

Uart_Parity *
Configures the parity for
data transmission and
reception

Uart_IOCTL_SET_FLOWC
ONTROL

Uart_FlowControl
*

Configures the flow control
for the data
transmission/reception

Uart_IOCTL_SET_TRIGG
ER_LEVEL

Uart_RxTrigLvl * Configures the trigger level
the receive fifo full level

Uart_IOCTL_RESET_RX_
FIFO

None Resets the hardware receive
FIFO

Uart_IOCTL_RESET_TX_
FIFO

None Resets the hardware transmit
FIFO

Page 29 of 234

C6748 BIOS PSP User Guide

Uart_IOCTL_CANCEL_CU
RRENT_IO

None Cancels the current IO
operation request I progress

Uart_IOCTL_GET_STATS Uart_Stats * Passes the statistics of
driver operation to the user

Uart_IOCTL_CLEAR_STA
TS

None Resets/Clears the driver
statistics

Uart_IOCTL_FLUSH_ALL
_REQUEST

None Cancels all the I/O
operations queued

Uart_IOCTL_SET_POLLE
DMODETIMEOUT Uint32 * Change the value for polled

mode timeout

2.6 Use of UART driver through GIO APIs
Following sections explain the use of parameters of GIO calls in the context of PSP
driver. Note that no effort is made to document the use of GIO calls; only PSP
specific requirements are covered below.

2.6.1 GIO_create

Parameter
Number

Parameter Specifics to UART

1 Device Name string

Unique identifier used to identify this
driver. Please note the name should be
same as specified while creating the driver.
(Either through tcf or DEV_createDevice()

2 Channel Mode
Should be “IOM_INPUT” when UART
requires to received data and “IOM_OUTPUT”
when UART requires to transmit

3 Status
Address to place return status from Uart.

4 Channel Params Pointer to chanParams structure for Uart
channel.

5 GIO_Attrs * Parameters required for the creation of the
GIO instance (e.g. channel parameters)

Page 30 of 234

C6748 BIOS PSP User Guide

2.6.2 GIO_control

Parameter
Number

Parameter Specifics to UART

1 GIO_Handle Handle returned by GIO_create

2 Command IOCTL command defined by
UART driver

3 Arguments Misc arguments if required by
the command

2.6.3 GIO_write/read

Parameter
Number

Parameter Specifics to UART

1 Channel Handle Handle returned by GIO_create

2 Pointer to buffer
Should be pointer to the buffer
that holds data for transfer or
take data in case of receive

3 Pointer to size of buffer Size of the transaction

2.7 Sources that need re-targeting

2.7.1 ti/pspiom/cslr/soc_C6748.h (soc specific header file):

This file contains target (SoC) specific definitions. In most cases, changing the values
for the SoC specific details done here should suffice. However, if there are major
changes in the hardware instance then the driver file may be needed to change.

2.8 EDMA3 Dependency
UART driver relies on EDMA3 LLD driver to move data from/to application buffers to
peripheral; typically EDMA3 driver is PSP deliverable unless mentioned otherwise.
Please refer to the release notes that came with this release. Please ensure that
current PSP release is compliant with version of EDMA3 driver being used.

2.8.1 Used Paramset of EDMA 3

BIOSPSP UART driver uses TWO paramsets of EDMA3 per instance – one for Tx and
another for Rx; if there are no paramsets available the driver creation would fail.
These paramsets are used through the life time of UART driver. No link paramsets
are used.

2.9 Known Issues
Please refer to the top level release notes that came with this release.

2.10 Limitations
Please refer to the top level release notes that came with this release.

Page 31 of 234

C6748 BIOS PSP User Guide

2.11 Uart Sample applications

2.11.1 Interrupt mode sample

2.11.1.1 Description:

This sample demonstrates the use of the Uart driver in interrupt mode.

The Uart driver is configured statically in uartSample.tci file. The initFxn and
uartParams used in UDEV.create are globals declared in uartSample.c.

The uartSample.tcf file contains the remaining BIOS configuration. The most
important lines in this file which the application may need to pull into his tcf file are
as follows.

bios.ECM.ENABLE = 1;

bios.HWI.instance("HWI_INT8").interruptSelectNumber = 1;

These lines configure the ECM module and map Uart events to CPU interrupts. For
example the Uart event number is 38 which falls in ECM group 1. Here ECM group 1
is mapped to HWI_INT8.

The main() function configures the PINMUX and uses the Psc module to enable the
Uart peripheral.

The echo() task exercises the Uart driver. It uses GIO APIS to create uart channels
amd read and write to them.

The user_uart0_init() calls Uart_init() and initializes the Uart_Params structure.

2.11.1.2 Build:

 This sample can be built using

<ID>/packages/ti/pspiom/examples/evm6748/uart/interrupt/build/ccs3/uartSample.
pjt

IMPORTANT NOTE: uartSample.pjt contains references to
%EDMA3LLD_BIOS5_INSTALLDIR% environment variable and links with edma3
libraries. This is required because by default the Uart driver library is built with –
DUart_EDMA_ENABLE. The user can remove all references of EDMA3 from
uartSample.pjt if he re-builds the Uart library without –DUart_EDMA_ENABLE.

2.11.1.3 Setup:

You need to connect a NULL Model cable from the EVM C6748 platform to a host PC.
On the host an application like HyperTerminal needs to be setup for appropriate COM
port, baud rate etc.

2.11.1.4 Output:

 When the sample runs, it will output the following string to the Uart output
channel.

“UART Demo Starts: INPUT a file of size 1000 bytes".

 The user needs to type or send 1000 bytes. The user could make use of the
sample.txt file provided with the package at
ti\pspiom\examples\evm6748\uart\<edma/interrupt>. This file contains 1000
characters of data

 This sample application will echo the received characters to the terminal.

Page 32 of 234

C6748 BIOS PSP User Guide

2.11.2 Dma mode sample

2.11.2.1 Description:

This sample demonstrates the use of the Uart driver in DMA mode.

The Uart driver is configured statically in uartSample.tci file. This file can be directly
imported into an application’s tcf script. The initFxn and uartParams used in
UDEV.create are globals declared in uartSample.c.

The uartSample.tcf file contains the remaining BIOS configuration. The most
important lines in this file which the application may need to pull into his tcf file are
as follows.

bios.ECM.ENABLE = 1;

bios.HWI.instance("HWI_INT8").interruptSelectNumber = 1;

These lines configure the ECM module and map Uart events to CPU interrupts. For
example the Uart event number is 38 which falls in ECM group 1. Here ECM group 1
is mapped to HWI_INT8.

The main() function configures the PINMUX and uses the Psc module to enable the
Uart peripheral.

The echo() task exercises the Uart driver. It uses GIO APIS to create uart channels
and reads and writes to them.

The user_uart0_init() calls Uart_init() and initializes the Uart_Params structure. It
also calls edma3init() which initializes the EDMA3 driver and sets up hEdma.

2.11.2.2 Build:

 This sample can be built using

<ID>/packages/ti/pspiom/examples/evm6748/uart/edma/build/ccs3/uartSample.pjt

IMPORTANT NOTE: uartSample.pjt assumes that the Uart driver library is built with –
DUart_EDMA_ENABLE.

2.11.2.3 Setup:

You need to connect a NULL Modem cable from the EVM C6748 platform to a host
PC. On the host an application like HyperTerminal needs to be setup for appropriate
COM port, baud rate etc.

2.11.2.4 Output:

When the sample runs, it will output the following string to the Uart ouput channel.

“UART Demo Starts: INPUT a file of size 1000 bytes".

The user needs to type or send 100 bytes. This sample application will acho the
received characters to the terminal.

The user needs to type or send 1000 bytes. This sample application will echo the
received characters to the terminal. The user could make use of the sample.txt file
provided with the package at ti\pspiom\examples\evm6748\uart. This file contains
1000 characters of data.

Page 33 of 234

C6748 BIOS PSP User Guide

3 I2C driver

3.1 Introduction
This document is the reference guide for the I2C device driver which explains the
features and tips to use them.

DSP/BIOS applications use the driver typically through APIs provided by the GIO
layer, in order to transmit and receive serial data. The following sections describe in
detail the necessary procedures to configure and use this driver, as well as other
additional information. It is recommended to go through the sample application to
get a feel of initializing and using the I2c driver.

3.1.1 Key Features

 Multi instantiable and re-entrant driver

 Each instance can operate as an receiver and/or transmitter

 Supports Polled, Interrupt and DMA Interrupt Mode of operation

3.2 Installation
The I2c device driver is a part of the PSP package for the C6748 and is installed as
part of whole package installation. For high level design information, please refer to
the driver architecture guide that came with this package (available at
<ID>\ti\pspiom\i2c\docs)

3.2.1 I2C Component folder

On installation of PSP package for the C6748, the I2C driver can be found at <ID>\
ti\pspiom\i2c\

As show above, the i2c folder contains several sub-folders, the contents of which are
described below.

 i2c - The i2c folder is the place holder for the entire I2C driver, documents
and the build configuration files. This folder contains I2c.h, which is the
header file included by the application.

 build - contains CCS 3.3 / CCS 4 project files to build the I2c library.

 docs – Contains doxygen generated API reference.

 src – Contains the I2C driver’s source code.

3.2.2 Build Options

The I2c library can be built using the CCS v3.3 project file located at
<ID>\packages\ti\pspiom\i2c\build\C6748\ccs3\i2c.pjt. This project file supports the
following build configurations.

The project can also be built using the CCS v4 project file located at the
<ID>\packages\ti\pspiom\i2c\build\C6748\ccs4.

IMPORTANT NOTE:

Page 34 of 234

C6748 BIOS PSP User Guide

All build configurations require environment variable
%EDMA3LLD_BIOS5_INSTALLDIR% to be defined. This variable must point to
“<EDMA3_INSTALL_DIR>\packages”.

Debug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines “-DI2c_EDMA_ENABLE” to enable EDMA3 support in I2c driver. It also
contains “-i%EDMA3LLD_BIOS5_INSTALLDIR%” to find EDMA3 header files.

iDebug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines “-DI2c_EDMA_ENABLE” to enable EDMA3 support in I2c driver. It also
contains “-i%EDMA3LLD_BIOS5_INSTALLDIR%” to find EDMA3 header files.

 Defines “I2c_DEBUGPRINT_ENABLE to enable I2c driver to LOG debug
messages.

Release:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines “-DI2c_EDMA_ENABLE” to enable EDMA3 support in I2c driver. It also
contains “-i%EDMA3LLD_BIOS5_INSTALLDIR%” to find EDMA3 header files.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

iRelease:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines “-DI2c_EDMA_ENABLE” to enable EDMA3 support in I2c driver. It also
contains “-i%EDMA3LLD_BIOS5_INSTALLDIR%” to find EDMA3 header files.

 Defines “I2c_DEBUGPRINT_ENABLE to enable I2c driver to LOG debug
messages.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

3.2.2.1 Required and Optional Pre-defined symbols
The I2c library must be built with a soc specific pre-defined symbol.

“-DCHIP_C6748” is used above to build for C6748. Internally this define is used
to select a soc specific header file (soc_C6748.h). This header file contains
information such as base addresses of I2C devices, their event numbers, etc.

The I2c library can also be built with these optional pre-defined symbols.

Use –DI2c_EDMA_ENABLE when building library to enable DMA support in I2c
driver. If this symbol is not defined edma specific code will get eliminated and the
driver can be used only in POLLED or INTERRUPT mode.

Page 35 of 234

C6748 BIOS PSP User Guide

Use -DPSP_DISABLE_INPUT_PARAMETER_CHECK when building library to turn
OFF parameter checking. This symbol is defined for Release and iRelease profiles
by default in the CCS 3.3 pjts provided.

Use -DNDEBUG when building library to turn off runtime asserts. This symbol is
defined for Release and iRelease profiles by default in the CCS 3.3 pjts provided.

3.3 Features
This section details the features of I2C and how to use them in detail.

3.3.1 Multi-Instance

The I2C driver can operate on all the instances of I2C on the EVM C6748. Different
instances may be specified during driver creation time, and instances 0 through 2
with corresponding device IDs 0 through 2 are supported, respectively.

These instances can operate simultaneously with configurations supported by the I2C
driver. I2C instances are created as follows:

1. Static creation – static creation is done in the “tcf” file of the application;
this creation happens at build time. The UDEV module (UDEV.create) is
used during static configuration. An instance of the UDEV module at static
configuration time corresponds to creating and initializing an I2C instance

2. Dynamic creation – Dynamic creation of an I2C instance is done in the
application source files by calling DEV_createDevice(); this creation
happens at runtime.

UDEV.create and DEV_createDevice allow user to specify the following:

 IomFxns: Pointer to IOM function table. I2C requires this field to be
I2c_IOMFXNS.

 initFxn: I2C requires that the user call I2c_init() as part of this initFxn. Users
can also directly hook in I2c_init().

 device parameters: I2C requires the user to pass an I2c_Params struct. This
struct must exist in the application source files and it must be initialized very
early as part of driver specific initFxn.

 deviceId to identify the I2C peripheral.

For more information on configuring UDEV and I2c, please refer to the I2c sample
application (included with this driver release), and the DSP/BIOS API Reference
(spru403o.pdf, included in your DSP/BIOS installation).

3.3.2 Each Instance as Transmitter and/or receiver

I2C driver can be simultaneously operated as a transmitter and receiver. This could
be achieved by opening a GIO Channel as an INPUT channel and opening another
GIO Channel as an OUTPUT channel. The type of Channel is specified while creating
the channel (using GIO_create() and specifying “DriverTypes_OUTPUT” or
“DriverTypes_INPUT”). The configuration parameters are explained in the sections
to follow.

Page 36 of 234

C6748 BIOS PSP User Guide

3.4 Power management Considerations
The I2c driver supports the V/F scaling and sleep mode power management features.
The following points should be kept in mind when working with the power
management enabled.

 The I2c driver will not support power management features when operating in
the slave mode.

 In the I2C driver, for device id 0, one should enable pscPwrmEnabe = TRUE
even though the instance is on Aysnc3 domain. This is because PWRM also
uses the same instance of I2C for communication with the PMIC on board. To
workaround any setting user modification during the time PWRM has used the
instance, the I2C driver implements a save and restore of the current device
context like clock settings, reset condition etc. This has to be done in the
PWRM notification callback context which shall be registered only if the
pwcPwrmEnable is TRUE.

For other details on the power management support please refer to Power
Management.

3.5 Configurations
Following tables document some of the configurable parameter of I2C. Please refer
to I2c.h for complete configurations and explanations.

3.5.1 I2c_Params

This structure defines the device configurations, expected to supply while
instantiating the driver.

Members Description

enableCache
This option is used if the driver should take care of
validating/invalidating the cache for the buffers
provided by the user.

opMode Whether the I2C driver should operate in Polled or
Interrupt or DMA Interrupt Mode

ownAddr The slave address of the device application is
addressing

loopbackEnabled Enable or Disable digital loop back mode

numBits The number of data bits

busFreq The frequency at which the clock (SCL) is operating

addressing Whether 7 bit addressing or extended (10-bit)
addressing mode is used

edma3EventQueue The EDMA event queue the application will use in DMA
Interrupt mode of operation mode

hwiNumber The hardware interrupt number assigned for I2C
events

polledModeTimeout The data transfer timeout for polled mode of operation

Page 37 of 234

C6748 BIOS PSP User Guide

pscPwrmEnable Boolean flag to enable (TRUE) or disable (FALSE) any
power management in the driver

pllDomain PLL domain where the current device instance is
connected to.

Note: I2C address does not allow addressing “self”. That is any requests with slave
address as own address is not permitted, and such submit requests raise an error.

Apart from the instance parameters described above module wide constants declared
in I2c.h can be changed e.g. I2c_peripheralClkFreq. These constants apply to all I2c
instances.

Build options can also be added or removed to add/remove features. e.g. –
DI2c_EDMA_ENABLE.

3.5.2 I2c_ChanParams

Applications could use this structure to configure the channel specific configurations.
This is provided when driver channels are created (e.g. GIO_create)

Members Description

hEdma

The handle to the EDMA driver. Required only when operating
in DMA interrupt mode. Also, note that when operating in DMA
interrupt mode, the necessary define switch –
DI2c_EDMA_ENABLE should be defined, as described in
section 3.2.2 “Build Options".

masterOrSlave Whether the channel is in Master mode or Slave mode

Please note that the EDMA LLD driver supports multiple instances of the EDMA
hardware (2 in case of C6748). The handles to these instances will be valid after
calling the edma3init() API. The application should then appropriately pass the EDMA
handle via hEdma field above (hEdma[0] or hEdma[1]). If the application is
instantiating the driver for device instance number 0 and EDMA event from this
device instance are mapped to EDMA controller 0 then the application has to pass
hEdma[0].

3.5.3 Polled Mode

The configurations required for polled mode of operation are:

Instance configuration opMode should be set to I2c_OpMode_POLLED. Additionally
the timeout parameter for the data transfer operation can be configured as required.
For example, polledModeTimeout could be set to 1000 Ticks, while the default value
is BIOS_WAIT_FOREVER.

3.5.4 Interrupt Mode

The configurations required for interrupt mode of operation are:

Instance configuration opMode should be set to I2c_OpMode_INTERRUPT.
Additionally the hwiNumber assigned by the application for the I2C CPU events group
should be passed, so that the driver can enable proper interrupts.

Page 38 of 234

C6748 BIOS PSP User Guide

It is recommended to start from the sample application and modify it further to meet
the need of the actual application.

3.5.5 DMA Interrupt Mode

The configurations required for DMA Interrupt mode of operation are:

Instance configuration opMode should be set to I2c_OpMode_DMAINTERRUPT.
Additionally the hwiNumber assigned by the application for the I2C CPU events group
should be passed, so that the driver can enable proper interrupts. Also, as part of
chanParams, the handle to the EDMA driver, hEdma, should be passed by the
application.

Note that -DI2c_EDMA_ENABLE define should be supplied as a compiler switch for
proper operation in this mode so the sample application initializes the edma driver
and passes the appropriate chanParams.

3.5.6 Slave mode

This version of I2C driver supports slave mode and to use this driver in I2C slave
mode the following option are mandatory.

a) masterOrSlave flag in chanparams to select slave mode.

b) Do not use I2c_MASTER flag in the DataParam->flags during the IO submits

Please note the following

 Only one channel is allowed to be open in Slave mode.

 I2C driver does not support slave mode of operation in polled mode. Only
interrupt and DMA interrupt mode of operation are supported.

 (a) I2C slave application need to take care of the data (application level) protocol
on when and what to receive and send by/from slave side. (b)This driver provides
a generic bus communication path for slave. (c) Application protocol also needs
to consider the latency caused by software slave implementation. (d) The driver
does not support “0” no of byte transfer and the slave driver would not function
properly if master issues a STOP condition immediately after a START condition.

 In receive mode, the current IOP is completed when an SCD is detected.
However, when the receive buffer is exhausted, the slave sends a “NACK”.

 In transmit mode, the current IOP is completed when an SCD is detected
(generated) on the bus. However, when the transmit buffer has exhausted,
though the IOP is completed, dummy bytes are transferred
(“I2c_SLAVE_TX_DATA”). This is done to prevent the call to the driver from the
application from blocking indefinitely.

3.5.7 I2c_DataParam

The I2c_DataParam structure is one the most important structures that needs to be
passed as a buffer in the GIO_read/write calls.

For I2C communication, the device needs not just the actual data for transfer but
additional details also like the address of the device that it should communicate to,
communication control bit flags (START/STOP etc) and any other parameters as
demanded by the case. All these are collected under one structure called the
DataParam structure.

Page 39 of 234

C6748 BIOS PSP User Guide

Members Description

slaveAddr The address of the slave device that this data transfer
operation is intended for

buffer The actual data that should be sent out on the SDA line

bufLen The length of the data that should be sent out in the SDA line

flags The flags for current data transfer (explained below)

param Reserved for future use

The flags member of the DataParam structure defines the control signal that is
needed to be generated for the current operation. For example, if slave device
demands that current transfer should not generate a stop bit, then this can be
controlled by not specifying the I2C_STOP flag in the flags member. However,
please note that the flags should contain a meaningful combination for the current
transfer and should be supported on the instance and the slave device for that
transfer.

3.6 Control Commands
Following table describes some of important the control commands, for a
comprehensive list please refer the IOCTL defined in I2c.h.

Command Arguments Description

I2c_IOCTL_SET_BIT_RATE UInt32 * Configures the bus frequency
for the I2C instance

I2c_IOCTL_GET_BIT_RATE UInt32 * Passes the current bus
frequency for the I2C instance

I2c_IOCTL_CANCEL_PENDI
NG_IO

None Cancels all the pending I/O
requests

I2c_IOCTL_BIT_COUNT UInt32 * Configures the data bit length
for transmission and reception

I2c_IOCTL_NACK None Configures the I2C instance to
generate NACK when required

I2c_IOCTL_SET_OWN_ADDR UInt32 * Configures the own address for
current instance

I2c_IOCTL_GET_OWN_ADDR UInt32 * Passes the current own address
set for the current instance

I2c_IOCTL_SET_POLLEDMO
DETIMEOUT

UInt32 * Change the value for polled
mode timeout

Page 40 of 234

C6748 BIOS PSP User Guide

3.7 Use of I2C driver through GIO APIs
Following sections explain the use of parameters of GIO calls in the context of PSP
driver. Note that no effort is made to document the use of GIO calls; any PSP specific
requirements are covered below.

3.7.1 GIO_create

Parameter
Number

Parameter Specifics to I2C

1 Device Name string

Unique identifier used to identify this
driver. Please note the name should be
same as specified while creating the driver.
(Either through TCF or DEV_createDevice
()

2 Channel Mode
Should be “IOM_INPUT” when I2C requires
to received data and “IOM_OUTPUT” when
I2C requires to transmit

3 GIO_Attrs * Parameters required for the creation of the
GIO instance (e.g. channel parameters)

3.7.2 GIO_control

Parameter
Number

Parameter Specifics to I2C

1 GIO_handle Handle returned by GIO_create

2 Command IOCTL command defined by I2C driver

3 Arguments Misc arguments if required by the command

3.7.3 GIO_write/read

Parameter
Number

Parameter Specifics to PSP

1 Channel Handle Handle returned by GIO_create

2 Pointer to buffer Should be pointer to buffer that holds the
audio data.

3 Size Size of the transaction

3.8 Sources that need re-targeting

3.8.1 ti/pspiom/cslr/soc_C6748.h (soc specific header file):

This file contains target (SoC) specific definitions. In most cases, changing the values
for the SoC specific details done here should suffice. However, if there are major
changes in the hardware instance then the driver file may be needed to change.

Page 41 of 234

C6748 BIOS PSP User Guide

3.9 EDMA3 Dependency
I2C driver relies on EDMA3 LLD driver to move data from/to application buffers to
peripheral; typically EDMA3 driver is PSP deliverable unless mentioned otherwise.
Please refer to the release notes that came with this release. Please ensure that
current PSP release is compliant with version of EDMA3 driver being used.

3.9.1 Used Paramset of EDMA 3

I2C driver uses TWO paramsets of EDMA3 per instance, one for Tx and another for
Rx; if there are no paramsets available the I2C driver creation would fail. These
paramsets are used through the lifetime of I2C driver. No link paramsets are used.

3.10 Known Issues
Please refer to the top level release notes that came with this release.

3.11 Limitations
Please refer to the top level release notes that came with this release.

3.12 I2c Sample application

3.12.1 Interrupt mode sample

3.12.1.1 Description:

This sample demonstrates the use of the I2c driver in interrupt mode.

This example writes to the I2C GPIO expander (TCA6416) to blink the LEDs
connected on Port0 of the expander.

The writes to the expander are accomplished by use of both the I2c and the GIO
modules, in combination. The I2c driver is used to configure and set up the I2c bus,
and the GIO module APIs are used to perform the actual reads and writes to the
expander, via the I2c bus.

The I2c driver is configured both statically in the i2cSample.tci and i2cSample.tcf
files, as well as at run time in the i2cSample_main.c and i2cSample_io.c files.

The i2cSample.tcf file contains important BIOS configuration settings, which are
required in order for the I2c operations to work properly. The most important lines
in this file are:

bios.ECM.ENABLE = 1;

bios.HWI.instance("HWI_INT8").interruptSelectNumber = 1;

The above configuration settings are needed to correctly set up the ECM module and
map the I2c event to CPU interrupt. For example the I2c event number is 36, which
falls under ECM group 1. Here ECM group 1 is mapped to HWI_INT8, and this is the
HWI number used when configuring i2cParams at runtime (explained further below).

Page 42 of 234

C6748 BIOS PSP User Guide

Further I2c static configuration is done in the i2cSample.tci file, which uses the UDEV
module to configure the user defined init function “user_i2c_init”, and also hook in
the I2c instance parameters (i2cParams).

At run time, this results in the I2c user defined init function to be called before the
main() function. This function in turn calls the actual I2c_init() function (a
requirement if a user defined init function is used), and then sets up the user’s I2c
instance parameters via “i2cParams”.

Once initialization has completed, the main() function runs, configuring the PINMUX.
Following this, the user defined task “echoTask()” runs, which creates GIO I2c read
and write handles. These handles are then used when calling the GIO_submit() API
to actually write and read data to and from the EEPROM memory.

3.12.1.2 Build:

 This sample can be built using

<ID>/packages/ti/pspiom/examples/evm6748/i2c/interrupt/build/ccs3/i2cSample.pjt

IMPORTANT NOTE: i2cSample.pjt contains references to
%EDMA3LLD_BIOS5_INSTALLDIR% environment variable and links with edma3
libraries. This is required because by default the I2c driver library is built with –
DI2c_EDMA_ENABLE. The user can remove all references of EDMA3 from
i2cSample.pjt if he re-builds the I2c library without –DI2c_EDMA_ENABLE.

3.12.1.3 Setup:

No special setup is needed to run the I2c example

3.12.1.4 Output:

 When the sample runs, it will output the following in DSP/BIOS message log
I2C Sample Application

I2C :Start of I2C sample application

I2C :End of I2C sample application

 The user LEDs connected to the I2c expander will blink.

3.12.2 DMA Interrupt mode sample

3.12.2.1 Description:

This sample demonstrates the use of the I2c driver in EDMA mode. In EDMA mode,
the I2c driver uses DMA for data transfers, instead of the CPU.

This example writes to the I2C GPIO expander (TCA6416) to blink the LEDs
connected on Port0 of the expander.

The writes to the expander are accomplished by use of both the I2c and the GIO
modules, in combination. The I2c driver is used to configure and set up the I2c bus,
and the GPIO module APIs are used to perform the actual reads and writes to the
expander, via the I2c bus.

Page 43 of 234

C6748 BIOS PSP User Guide

The I2c driver is configured both statically in the i2cSample.tci and i2cSample.tcf
files, as well as at run time in the i2cSample_main.c and i2cSample_io.c files.

The i2cSample.tcf file contains important BIOS configuration settings, which are
required in order for the I2c operations to work properly. The most important lines
in this file which the user would need in their application are:

bios.ECM.ENABLE = 1;

bios.HWI.instance("HWI_INT7").interruptSelectNumber = 0;

bios.HWI.instance("HWI_INT8").interruptSelectNumber = 1;

bios.HWI.instance("HWI_INT9").interruptSelectNumber = 2;

bios.HWI.instance("HWI_INT10").interruptSelectNumber = 3;

The above configuration settings are needed to correctly set up the ECM module and
map the EDMA events to CPU interrupts. Since the CPU is not used in I2c transfers
in EDMA mode, these ECM groups must be mapped to the EDMA events as shown.

Further I2c static configuration is done in the i2cSample.tci file, which uses the UDEV
module to configure the user defined init function “user_i2c_init”, and also hook in
the I2c instance parameters (i2cParams).

At run time, this results in the I2c user defined init function to be called before the
main() function. This function in turn calls the actual I2c_init() function (a
requirement if a user defined init function is used), and then sets up the user’s I2c
instance parameters via “i2cParams”.

Once initialization has completed, the main() function runs, configuring the PINMUX.
Following this, the user defined task “echoTask()” runs, which creates GIO I2c read
and write handles. These handles are then used when calling the GIO_submit() API
to actually write and read data to and from the EEPROM memory.

3.12.2.2 Build:

 This sample can be built using

<ID>/packages/ti/pspiom/examples/evm6748/i2c/edma/build/ccs3/i2cSample.pjt

IMPORTANT NOTE: i2cSample.pjt assumes that the I2c driver library is built with –
DI2c_EDMA_ENABLE.

3.12.2.3 Setup:

No special setup is needed to run the I2c example

3.12.2.4 Output:

 When the sample runs, it will output the following in DSP/BIOS message log
I2C Sample Application

I2C :Start of I2C sample application

I2C :End of I2C sample application

 The user LEDs connected to the I2c expander will blink.

Page 44 of 234

C6748 BIOS PSP User Guide

4 GPIO driver

4.1 Introduction
This section is the reference guide for the GPIO device driver which explains the
features and tips on how to use it.

DSP/BIOS applications use the driver typically through APIs provided by the GPIO
driver itself, in order to communicate with the GPIO hardware (the GPIO driver does
not follow the DSP/BIOS IOM model). The GPIO driver provides a set of basic APIs
which may be used to read or write to the GPIO pins or banks, configure/register
interrupts and corresponding interrupt service routines, configure rising or falling
edge triggers and more.

 This driver does not support any data transfer protocol; the user is expected to
write that protocol as a wrapper around the GPIO APIs provided, if needed.

The following sections describe in detail the necessary procedures to configure and
use this driver, as well as other additional information. It is recommended to go
through the sample application to get a feel of initializing and using the GPIO driver.

4.1.1 Key Features

 Setting GPIO pin directions

 Marking pins or banks as available for use

 Enabling and Disabling of bank interrupts

 Registering interrupt handlers for a pin or bank interrupt

 Getting or setting a group of pins to a value

4.2 Installation
The Gpio device driver is a part of the PSP package for the C6748 and is installed as
part of whole package installation. For high level design information, please refer to
the driver architecture guide that came with this package (available at
<ID>\ti\pspiom\gpio\docs)

4.2.1 Gpio Component folder

Upon installation of the PSP package for the C6748, the Gpio driver can be found at
<ID>\ ti\pspiom\gpio\

As show above, the gpio folder contains several sub-folders, the contents of which
are described below.

 gpio - The gpio folder is the place holder for the entire Gpio driver source and
the build configuration files. This folder contains Gpio.h, which is the header
file included by the application.

 build - contains CCS 3.3 / CCS 4 project files to build the Gpio library.

 src – Contains the Gpio driver’s source code.

Page 45 of 234

C6748 BIOS PSP User Guide

4.2.2 Build Options

The Gpio library can be built using the CCS v3.3 project file located at
<ID>\packages\ti\pspiom\gpio\build\C6748\ccs3\gpio.pjt. This project file supports
the following build configurations.

It can also be built using the CCS v4 project files located at
<ID>\packages\ti\pspiom\gpio\build\ C6748\ccs4

Debug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

iDebug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines “Gpio_DEBUGPRINT_ENABLE to enable Gpio driver to LOG debug
messages.

Release:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

iRelease:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines “Gpio_DEBUGPRINT_ENABLE to enable Gpio driver to LOG debug
messages.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

4.2.2.1 Required and Optional Pre-defined symbols
The Gpio library must be built with a soc specific pre-defined symbol.

“-DCHIP_C6748” is used above to build for C6748. Internally this define is used
to select a soc specific header file (soc_C6748.h). This header file contains
information such as base addresses of Gpio devices, their event numbers, etc.

If this define is missing, the following compile error will be thrown:

"No chip type defined! (Must use -DCHIP_C6748 or -DCHIP_C6748)"

The Gpio library can also be built with these optional pre-defined symbols.

Use -DPSP_DISABLE_INPUT_PARAMETER_CHECK when building library to turn
OFF parameter checking. This symbol is defined for Release and iRelease profiles
by default in the CCS 3.3 pjts provided.

Use -DNDEBUG when building library to turn off runtime asserts. This symbol is
defined for Release and iRelease profiles by default in the CCS 3.3 pjts provided.

Page 46 of 234

C6748 BIOS PSP User Guide

4.3 Features
This section details the features of Gpio and how to use it in detail.

4.3.1 Single-Instance Usage

The Gpio driver can operate on all the Gpio banks and pins on the EVM 6748. Only
one Gpio driver instance is currently supported by the Gpio driver module. Through
this instance, the user may specify bank and pin parameter settings as desired. This
single Gpio instance uses device ID 0.

Once configured and set up properly, the user may perform operations on the Gpio
banks and pins using the Gpio APIs provided by the Gpio module.

The Gpio driver is not an IOM driver, and therefore it is not necessary to make any
static configuration settings for UDEV, as is needed in the other drivers (e.g. Uart).
However, it is necessary to configure the HWI interrupt select numbers properly in
the BIOS configuration.

The following steps provide an overview of how to use the Gpio driver; it is
recommended that the user follow the Gpio example in tandem with these steps.
The first step must be done in the BIOS configuration file; all steps that follow must
be done in C code:

1. In the *.tcf file, set up HWI interrupt source numbers:

bios.HWI.instance("HWI_INT7").interruptSelectNumber = 0;

bios.HWI.instance("HWI_INT8").interruptSelectNumber = 1;

bios.HWI.instance("HWI_INT9").interruptSelectNumber = 2;

bios.HWI.instance("HWI_INT10").interruptSelectNumber = 3;

2. In the C file, declare a Gpio_Handle variable:

Gpio_Handle gpioHandle;

gpioHandle will be used later in the program to reference the Gpio instance
that exists as part of the driver.

3. Create a struct of type Gpio_Params:

Gpio_Params params = Gpio_PARAMS;

setting its value to Gpio_PARAMS initializes it to the default parameter values.

4. Use the params struct created in the previous step to configure pins and
banks as needed. For example:

/* set instance number to be 0 */

Page 47 of 234

C6748 BIOS PSP User Guide

params.instNum = 0;

/* specify the bank we want to use as unavailable */

params.BankParams[2].inUse = Gpio_InUse_No;

/* specify the HWI associated with this bank */

params.BankParams[2].hwiNum = 9;

/* specify the pin we want to use within this bank as
unavailable */

params.BankParams[2].PinConfInfo[5].inUse = Gpio_InUse_No;

5. Call Gpio_open() to get a handle to the Gpio instance:

gpioHandle = Gpio_open(¶ms);

6. Wake up the Gpio module (refer to section 7.4 “Use of PSC driver through
module APIs” for more information):

status = Psc_ModuleClkCtrl(Psc_DevId_1, GPIO_LPSC_NUM, TRUE);

7. Make calls to Gpio APIs as desired, using gpioHandle. For example:

status = Gpio_setRisingEdgeTrigger(gpioHandle, 5);

/*

 * make other Gpio API calls here, such as registering an

 * interrupt handler for a particular bank, etc.

 */

8. Close the instance handle (optional)

Gpio_close(gpioHandle);

For more information on configuring and using Gpio, please refer to the Gpio sample
application, and the doxygen documentation for Gpio (included with this driver
release).

4.4 Power Management considerations

The GPIO module does not have any kind of power management support.

Page 48 of 234

C6748 BIOS PSP User Guide

4.5 Configurations
Following tables document some of the configurable parameters of Gpio. Please refer
to the doxygen documentation or Gpio.h for complete configurations and
explanations.

4.5.1 Gpio_Params

This structure is used to define the user’s desired configuration settings for the Gpio
instance. It contains the instance number and the array of bank configuration
settings for the Gpio instance. The user is expected to supply an instance of this
struct when calling Gpio_open().

Members Description

instNum The Gpio instance to configure. Currently must be 0.

BankParams[] An array which represents the configuration settings
for the array of Gpio banks existing on the device.

4.5.2 Gpio_BankConfig

This structure represents the configuration settings for a particular bank in the Gpio
instance. The Gpio_Params structure contains an array of type Gpio_BankConfig,
through which the user can update to configure bank settings.

Members Description

PinConfInfo[] Array which represents the configuration settings for
the set of pins for this bank.

hwiNum The hardware interrupt number that is assigned to the
event associated with this bank.

inUse Used to specify the availability of this bank. Default is
Gpio_InUse_Yes (available).

4.5.3 Gpio_PinConfig

This structure represents the settings for an individual pin. The Gpio_Params
structure contains an array of type Gpio_BankConfig, and each of those elements in
turn contains an array of type Gpio_PinConfig. Through this indirection, the user
can configure pin settings for a particular bank. (please refer to the example code or
section 5.3.1 step 4 in this document to see how this works).

Members Description

PinConfInfo[] Array which represents the configuration settings for
the set of pins for this bank.

Page 49 of 234

C6748 BIOS PSP User Guide

hwiNum The hardware interrupt number that is assigned to the
event associated with this bank.

inUse Used to specify the availability of this bank. Default is
Gpio_InUse_Yes (available).

4.5.4 Gpio_InUse (enumeration type)

This enumeration is used frequently within the Gpio_Params and related
configuration structs. Its enumeration values are used when specifying whether or
not a bank or pin is available for use.

Gpio_InUse_Yes – specifies that the bank or pin is available to be used.

Gpio_InUse_No – specifies that the bank or pin is not available for use.

4.6 Gpio Bank Event Numbers
The bank event numbers are configured for the Gpio banks on the EVM 6748 can be
obtained from the SoC reference Guide. This table should be used when configuring
the HWI interrupt select numbers and HWI number for a given bank that the user
wishes to use.

4.7 Sources that need re-targeting

4.7.1 ti/pspiom/cslr/soc_C6748.h (soc specific header file):

This file contains target (SoC) specific definitions. In most cases, changing the values
for the SoC specific details done here should suffice. However, if there are major
changes in the hardware instance then the driver file may be needed to change.

4.8 Known Issues
Please refer to the top level release notes that came with this release.

4.9 Limitations
Please refer to the top level release notes that came with this release.

4.10 GPIO Sample application

4.10.1.1 Description:

This sample demonstrates the use of the GPIO driver.

This example demonstrates the use of GPIO driver in detecting MMCSD cards. The
MMCSD card when inserted/removed toggles GPIO pin.

GPIO module APIs are used to interact with the GPIO driver for GPIO operations.

The GPIO driver is configured at run time in the gpioSample_main.c and
gpioSample_io.c files. Since, it is not an IOM driver there will be no configuration
possible in BIOS configurations file (*.tcf/*.tci).

Page 50 of 234

C6748 BIOS PSP User Guide

The gpioSample.tcf file contains important BIOS configuration settings, which are
required in order for the GPIO operations to work properly. The most important lines
in this file are (for example):

bios.ECM.ENABLE = 1;

bios.HWI.instance("HWI_INT8").interruptSelectNumber = 1;

The above configuration settings are needed to correctly set up the ECM module and
map the GPIO Bank/Pin event to CPU interrupt.

Once initialization has completed, the main() function runs, configuring the PINMUX.
Following this, the user defined task “gpioExampleTask()” runs, which initializes
necessary pins and registers interrupt handler. This interrupt handler is invoked
whenver there MMCSD card is inserted/removed from the MMCSD slot.

4.10.1.2 Build:

 This sample can be built using

<ID>/packages/ti/pspiom/examples/evm6748/gpio/build/ccs3/gpioSample.pjt

4.10.1.3 Setup:

Requires a MMCSD card that will be detected via GPIO.

4.10.1.4 Output:

When the sample runs, the task waits for the MMCSD card insertion. Once the card is
inserted the interrupt occurs, which invokes the interrupt handler registered and the
messages are printed in the DSP/BIOS message log window.

Page 51 of 234

C6748 BIOS PSP User Guide

5 LCDC Raster Controller Driver

5.1 Introduction
This document is the reference guide for the LCDC Raster controller device driver
which explains the features and tips to use them.

DSP/BIOS applications use the driver typically through APIs provided by the SIO
layer, to transmit and receive serial data. The following sections describe in detail
the necessary procedures to configure and use this driver, as well as other additional
information. It is recommended to go through the sample application to get a feel of
initializing and using the LCDC Raster driver.

5.1.1 Key Features

 Multi-instance able, asynchronous and re-entrant driver.

 Each instance operates as a raster controller instance of the LCDC.

 Supports multiple frame sizes – only limited by the hardware.

5.2 Installation
The LCDC Raster device driver is a part of PSP package for C6748 platform and is
installed as part of whole package installation.

5.2.1 LCDC Raster Component folder

On installation of PSP package for the C6748, the LCDC Raster Controller driver can
be found at <ID>\ ti\pspiom\lcdcraster\

As show above the LCDC Raster contains sub-folders, the contents of which are
described below.

 lcdcraster - The lcdcraster folder is the place holder for the entire lcdcraster
driver source and the build configuration files. LCDC Raster driver is
implemented as an IOM driver under DSP/BIOS™ operating system. SIO
defined APIs can be used to interface to LCDC Raster driver. This folder
contains the build configuration file (package.bld), the LCDC Raster header
file that’s included by the application (Raster.h).

 build - contains CCS 3.3 / CCS 4 project files to build the LCDC Raster
library.

 lib – contains the LCDC Raster libraries.

 src – Place holder for LCDC Raster driver’s source code.

5.2.2 Build Options

The LCDC Raster library can be built using the CCS v3.3 project file located at
<ID>\packages\ti\pspiom\lcdcraster\build\C6748\ccs3\lcdcraster.pjt. This project
file supports the following build configurations.

It can also be built using the CCS v4 project files located at
<ID>\packages\ti\pspiom\lcdcraster\build\C6748\ccs4

Page 52 of 234

C6748 BIOS PSP User Guide

Debug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

iDebug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines “Raster_DEBUGPRINT_ENABLE to enable Raster driver to LOG debug
messages.

Release:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

iRelease:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

 Defines “Raster_DEBUGPRINT_ENABLE to enable Raster driver to LOG debug
messages.

5.2.2.1 Required and Optional Pre-defined symbols
The LCDC Raster library must be built with a soc specific pre-defined symbol.

“-DCHIP_C6748” is used above to build for C6748. Internally this define is used
to select a soc specific header file (soc_C6748.h). This header file contains
information such as base addresses of LCDC devices, their interrupt numbers,
etc.

If this define is missing, the following compile error will be thrown:

"No chip type defined! (Must use -DCHIP_C6748 or -DCHIP_C6748)"

The LCDC Raster library can also be built with these optional pre-defined
symbols.

Use -DPSP_DISABLE_INPUT_PARAMETER_CHECK when building library to turn
OFF parameter checking. This symbol is defined for Release and iRelease profiles
by default in the CCS 3.3 pjts provided.

Use -DNDEBUG when building library to turn off runtime asserts. This symbol is
defined for Release and iRelease profiles by default in the CCS 3.3 pjts provided.

5.3 Features
This section details the features of LCDC Raster and how to use them in detail.

Page 53 of 234

C6748 BIOS PSP User Guide

5.3.1 Multi-Instance Usage

The Raster driver can be used to operate the LCDC Controller in Raster mode on the
C6748. Currently, only one driver instance for LCDC Raster is supported during
driver creation time for the C6748. This is because there is only one LCDC Raster
controller on the hardware. However, the driver is written in such a way as to
support multiple instances for when new SOCs are added which do have multiple
controllers. A LCDC Raster driver instance for the C6748 should use a single
instance with device ID 0.

A LCDC Raster instance can be operated with configurations supported by Raster
driver. The device ID can be specified using the deviceId field of a UDEV instance
(however, only deviceId = 0 is supported for the C6748).

There are two ways in which a new instance of the Raster driver can be created.

1. Static creation – static creation is done in the “tcf” file of the application; this
creation happens at build time. It’s necessary to configure LCDC Raster using
two modules:

a. The UDEV module (UDEV.create) is used during static configuration. An
instance of the UDEV module at static configuration time corresponds to
creating and initializing an LCDC Raster instance.

b. It is also necessary to create an instance of the class driver DIO. This DIO
instance is needed in order to write to the LCDC Raster controller using the
SIO module at run time. It’s necessary to hook the UDEV instance that was
created into this DIO instance via the DIO instance property deviceName.
Additionally, a Raster_ChanParams struct (which must be defined in the
application’s C code) must be set using the DIO instance property
chanParams.

2. Dynamic creation – Dynamic creation of an LCDC Raster instance is done in the
application source files by calling DEV_createDevice(); this creation happens at
runtime. However, it is still necessary to configure the DIO instance statically, as
described in part 1.b above.

UDEV.create and DEV_createDevice allow user to specify the following:

 iomFxns: Pointer to IOM function table. Raster requires this field to be
Raster_IOMFXNS.

 initFxn: LCDC Raster requires that the user call Raster_init() as part of this
initFxn. Users can also directly hook in Raster_init().

 device parameters: LCDC Raster requires the user to pass an
Raster_Params struct. This struct must exist in the application source files
and it must be initialized very early as part of driver specific initFxn.

 deviceId to identify the LCDC Raster peripheral.

For more information on configuring UDEV, DIO and LCDC Raster, please refer to the
LCDC Raster sample application (included with this driver release), and the
DSP/BIOS API Reference (spru403o.pdf, included in your DSP/BIOS installation).

5.3.2 I/O using raster driver

The Raster driver can operate only in output mode. This is because, the LCDC Raster
controller can only output image data onto the Raster LCD displays, using the
concept of frame buffers. There is nothing to be read. Hence, the driver only
supports a “write” channel creation.

Page 54 of 234

C6748 BIOS PSP User Guide

5.4 Power management Considerations
The raster driver supports the V/F scaling and sleep mode power management
features. The following points should be kept in mind when working with the power
management enabled.

 The application must ensure that the raster is disabled before any of the
PWRM events are invoked by the application. Otherwise, the raster driver will
return an error.

For other details on the power management support please refer to Power
Management

5.5 Configurations
Following tables document some of the configurable parameter of LCDC Raster
device. Please refer to Raster.h for complete configurations and explanations.

5.5.1 Device Parameters

This structure defines the device instance configuration, which should be supplied
while instantiating the driver.

Raster_Params

Members Description

devConf The device configuration provided as a Raster_DeviceConf
structure

5.5.1.1 Raster_DeviceConf

This structure defines the LCDC device setting configuration.

Members Description

clkFreqHz The output pixel clock frequency desired to be set

opMode Mode of operation

hwiNum The HWI event number assigned to the group the LCDC
CPU event belongs to

dma Configuration for the DMA controller internal to LCDC.
This is provided as a Raster_DmaConfig structure

pscPwrmEnable Boolean flag to enable (TRUE) or disable (FALSE) any
power management in the driver

pllDomain PLL domain where the current device instance is
connected to.

Note: The only mode of operation supported by the LCDC Raster driver is
DMAINTERRUPT mode. This utilizes the independent DMA controller that the LCDC
controller is provided with. This DMA is different from the EDMA peripheral of the
C6748. This DMA takes care of transferring the data in terms of frame buffer from
external RAM to the display. This DMA can be configured as noted above in via

Page 55 of 234

C6748 BIOS PSP User Guide

Raster_DeviceConf structure and as described below via Raster_DmaConfig
structure. For further details refer to TMS320C6748 DSP LCD Controller User’s Guide.

5.5.1.2 Internal DMA Configuration

This structure defines the parameters to configure the DMA operation, internal to the
LCDC controller.

Raster_DmaConfig

Members Description

fbMode The device should operate in single frame buffer mode or
double frame buffer mode (ping-pong mode)

burstSize The chunks of 4-bytes in which the DMA should transfer
the data

bigEndian The operation is big endian mode or little endian mode

eofInt To enable End Of Frame interrupts

Note: The driver currently only supports little endian mode of operation. Hence big-
Endian should be set to false.

5.5.2 Channel Parameters

The channel parameters configure the raster controller operation and are described
below.

Raster_ChanParams

Members Description

Controller The controller type to be configured. This should be
configured as a Raster_Controller

chanConf The Raster controller configuration, given as
Raster_RasterConf

segId The MEM segment ID to be used if the driver is to allocate
the frame buffer memory on application’s behalf

Note:

The allocation of memory for the frame buffer is purely on application’s behalf. This
happens, when the application asks the driver to allocate memory for the frame
buffers it requires, via IOCTL calls. In such cases, dynamic allocation happens from
the heap. The heap from which the allocation is made should be defined by the
application. In result, the application should create a heap using the DSP/BIOS MEM
manager, and pass the segment ID for this heap via segId. In case the segId is
NULL and the application requests for allocation, then the driver tries to allocate the
frame buffer from the default heap of the system. However, the application may
choose not to allocate the frame buffers via driver and instead just pass the buffers it
has populated to the driver. The driver shall simple processes these buffers and in
this case no dynamic allocation happens in the driver.

Page 56 of 234

C6748 BIOS PSP User Guide

5.5.2.1 Raster controller configuration

Raster_RasterConf

Members Description

outputFormat Right aligned or left aligned, TFT or STN data format

intface The physical data interface with the display

panel Whether STN or TFT type of panel. For raster It should be
TFT

display If monochrome or colour display is interfaced

bitsPP The number of bits per pixel

fbContent If the frame buffer contains frame data, pallete, or both

dataOrder The order of data is arranged is ‘LSB to MSB’ or ‘MSB to
LSB’

nibbleMode If the nibble mode should be enabled. This is true for bits
per pixel less than 8 bits

subPanel The configuration required for sub-panel, when enabled

timing2 The configuration required for SYNC signals and their
polarity control

fifoDmaDelay The delay after which the raster should generate DMA
request to the internal DMA controller

intMask Interrupts which need to be enabled

hFP Horizontal front porch length in terms of number of pixel
clock cycles

hBP Horizontal back porch length in terms of number of pixel
clock cycles

hSPW Horizontal sync pulse width in terms of number of pixel
clock cycles

pPL Number of pixels per line

vFP vertical front porch length in terms of number of line clock
cycles

vBP vertical back porch length in terms of number of line clock
cycles

vSPW vertical sync pulse width in terms of number of line clock
cycles

lPP Number of lines per panel

Page 57 of 234

C6748 BIOS PSP User Guide

5.6 Control Commands
The following are some of the important control commands for the raster controller
driver:

Command Arguments Description

Raster_IOCTL_GET_DEVIC
E_CONF

Pointer to
Raster_DeviceConf
structure

To get the
current device
configuration

Raster_IOCTL_GET_RASTE
R_CONF

Pointer to
Raster_RasterConf
structure

To get the
current raster
configuration

Raster_IOCTL_GET_RASTE
R_SUBPANEL_CONF

Pointer to
Raster_RasterSubpanel
structure

To get the
current raster
sub panel
configuration

Raster_IOCTL_SET_RASTE
R_SUBPANEL_EN Pointer to Void

If boolean is
true then enables
subpanel, else
disables subpanel

Raster_IOCTL_SET_RASTE
R_SUBPANEL_POS Pointer to Void

To configure the
position of the
raster subpanel

Raster_IOCTL_SET_RASTE
R_SUBPANEL_LPPT Pointer to Void

To configure the
number of lines
to be refreshed
in the subPanel

Raster_IOCTL_SET_RASTE
R_SUBPANEL_DATA Pointer to Void

To configure the
default pixel
data outside the
subPanel

Raster_IOCTL_GET_DMA_C
ONF

Pointer to
Raster_DmaConfig
structure

To get the
current DMA
configuration
setting

Raster_IOCTL_SET_DMA_F
B_MODE

Pointer to Void
To set the frame
buffer mode for
the

Raster_IOCTL_SET_DMA_B
URST_SIZE

Pointer to Void To set the DMA
burst size

Raster_IOCTL_SET_DMA_E
OF_INT

Pointer to Void
To enable/disable
the end-of-frame
interrupt

Raster_IOCTL_ADD_RASTE
R_EVENT

Pointer to Uint32
variable containing the
interrupt mask

To enable a
specific event
interrupt enable

Raster_IOCTL_REM_RASTE
R_EVENT

Pointer to Uint32
variable containing

To disable a
specific event

Page 58 of 234

C6748 BIOS PSP User Guide

interrupt mask interrupt disable

Raster_IOCTL_GET_EVENT
_STAT

Pointer to
Raster_EvenStat structure

To get the
current event
statistics

Raster_IOCTL_CLEAR_EVE
NT_STAT None

Clears the
current event
statistics

Raster_IOCTL_RASTER_EN
ABLE

None To enable the
raster controller

Raster_IOCTL_RASTER_DI
SABLE None To disable the

raster controller

Raster_IOCTL_GET_DEVIC
E_VERSION

Pointer to Uint32
variable

To get the
current version
of the controller

Raster_IOCTL_ALLOC_FB
Pointer to a
Raster_FrameBuffer

To allocate a
frame buffer on
application’s
behalf

Raster_IOCTL_FREE_FB
Pointer to a
Raster_FrameBuffer

To de-allocate a
frame buffer in
application’s
behalf

5.7 Use of RASTER driver through SIO APIs

5.7.1 SIO_create

Parameter
Number

Parameter
Specifics to Raster

1 Device Name string

Unique identifier used to identify this
driver. Please note the name should be
same as specified while creating the DIO
instance in the “tcf” file.

2 IO mode Should be “SIO_OUTPUT”

3 size_t buffersize Size of stream buffer.

4 SIO_Attrs *attrs

Pointer to the parameters structure.
Should set:

 attrs.model =
SIO_ISSUERECLAIM;

Page 59 of 234

C6748 BIOS PSP User Guide

5.7.2 SIO_ctrl

Parameter
Number

Parameter Specifics to Raster

1 SIO_Handle stream Handle returned by SIO_create

2 Uns cmd IOCTL command defined by LCDC Raster
driver

3 Arg arg Misc arguments if required by the
command

5.7.3 SIO_issue

Parameter
Number

Parameter Specifics to Raster

1 SIO_Handle stream Handle returned by SIO_create

2 Pointer to buffer Should be pointer to framebuffer of type

3 Size Size of the transaction in MADUs

4 Arg arg User argument

5.7.4 SIO_reclaim

Parameter
Number

Parameter Specifics to Raster

1 SIO_Handle stream Handle returned by SIO_create

2 Pointer to buffer pointer to buffer

3 Size Size of the transaction

4 Arg *arg Pointer to user argument

5.8 Sources that need re-targeting

5.8.1 ti/pspiom/cslr/soc_C6748.h (soc specific header file):

This file contains target (SoC) specific definitions. In most cases, changing the values
for the SoC specific details done here should suffice. However, if there are major
changes in the hardware instance then the driver file may be needed to change.

5.9 EDMA3 Dependency
The raster controller driver does not rely on the EDMA LLD driver. The raster
controller interacts with an independent DMA controller provided to it and does not
use any EDMA3 parameter sets.

5.10 Known Issues
Please refer to the top level release notes that came with this release.

Page 60 of 234

C6748 BIOS PSP User Guide

5.11 Limitations
 The LCDC controller on C6748 has two modes of operation. One is the Raster

mode and the other is the LIDD mode. However, only one mode can be
operation can be chosen at a time. Following this constraint, the drivers for
these two modes have been separated out and the each mode has a different
driver/module , namely Raster and Lidd. Only one driver should be used at a
time.

For other limitations, please refer to the top level release notes that came with this
release.

5.12 Raster Sample Application

5.12.1.1 Description:

This sample demonstrates the use of the LCDC Raster driver.

The rasterSample.tcf file contains the remaining BIOS configuration like the
configuration of the event combiner, etc. This helps to map the LCDC events to the
CPU interrupts. It also creates a task for the function ‘rasterSampleTask()’, which
runs the sample application.

In particular, the rasterSample.tcf file contains the following important BIOS
configuration settings, LCDC Raster operations to work properly. The most
important lines in this file are:

bios.ECM.ENABLE = 1;

bios.HWI.instance("HWI_INT7").interruptSelectNumber = 0;

bios.HWI.instance("HWI_INT8").interruptSelectNumber = 1;

bios.HWI.instance("HWI_INT9").interruptSelectNumber = 2;

bios.HWI.instance("HWI_INT10").interruptSelectNumber = 3;

The above configuration settings are needed to correctly set up the ECM module and
map the LCDC Raster events to the correct CPU interrupts. For example the Lcdc
event number is 73, which falls under ECM group 2. Here ECM group 2 is mapped to
HWI_INT9, and this is the HWI number used when configuring lcdcParams at runtime
(explained further below).

Further LCDC Raster static configuration is done in the rasterSample.tci file and
raster.tci file. The rasterSample.tci file uses the UDEV module to configure the user
defined init function “userRasterInit”, and also hook in the LCDC instance parameters
(rasterParams). Additionally, the DIO module is used to connect this UDEV instance
and specify the channel parameters (chanParams); this DIO instance will be needed
to write to the LCDC Raster controller using the SIO module at run time.

The configuration of the user init function done in the rasterSample.tci file results in
this user defined init function (userRasterInit) to be called before the main()
function. This function in turn calls the actual Raster_init() function (a
requirement if a user defined init function is used), and then sets up the user’s
LCDC Raster instance parameters via “rasterParams”.

The main() function configures the PINMUX and uses the Psc module to enable the
LCDC peripheral.

Page 61 of 234

C6748 BIOS PSP User Guide

The rasterSampleTask() task exercises the LCDC Raster driver. It also, utilizes the
I2C driver to read/write to the I2C GPIO expander on the UI board to route the LCDC
signals to the display.

It uses SIO APIs for the creation of LCDC Raster driver channels and also to perform
the IO operations.

Please note that, when the raster channel is closed, the driver disables the raster.
However, the raster display panel may not go “black” owing to the property of the
display. If the user needs such a feature then one may issue an all black image.

5.12.1.2 Build:

This sample can be built using

<ID>/pspiom/examples/evm6748/lcdcraster/build/ccs3/rasterSample.pjt

IMPORTANT NOTE: rasterSample.pjt contains references to
%EDMA3LLD_BIOS5_INSTALLDIR% environment variable and links with edma3
libraries. This is required because by default the I2c driver library is built with –
DI2c_EDMA_ENABLE. The user can remove all references of EDMA3 from
rasterSample.pjt if he re-builds the I2c library without –DI2c_EDMA_ENABLE.

5.12.1.3 Setup:

The sample does not need any special setup apart from plugging in the C6748 User
Interface module.

5.12.1.4 Output:

When the sample is run an RGB stripe image with a scrolling line on the image is
shown on the raster display.

Page 62 of 234

C6748 BIOS PSP User Guide

6 LCDC LIDD Controller Driver

6.1 Introduction
This document is the reference guide for the LCDC LIDD controller device driver
which explains the features and tips to use them.

DSP/BIOS applications use the driver typically through APIs provided by the GIO
layer, to transmit and receive serial data. The following sections describe in detail
the necessary procedures to configure and use this driver, as well as other additional
information. It is recommended to go through the sample application to get a feel of
initializing and using the LCDC LIDD driver.

6.1.1 Key Features

 Multi-instance able, asynchronous and re-entrant driver.

 Each instance operates as a LIDD controller instance of the LCDC

 Supports multiple display types

6.2 Installation
The LCDC LIDD device driver is a part of PSP package for C6748 platform and is
installed as part of whole package installation.

6.2.1 LCDC LIDD Component folder

On installation of PSP package for C6748, the LCDC LIDD Controller driver can be
found at <ID>\ ti\pspiom\lcdclidd\

As show above the LIDD folder contains sub-folders, the contents of which are
described below.

 lcdclidd - The lcdclidd folder is the place holder for the entire lcdclidd driver
source and the build configuration files. LCDC LIDD driver is implemented as
an IOM driver under DSP/BIOS™ operating system. GIO defined APIs can be
used to interface to LCDC LIDD driver. This folder contains the build
configuration file (package.bld), the LCDC LIDD header file that’s included by
the application (Lidd.h).

 build - contains CCS 3.3 / CCS 4 project files to build the LCDC LIDD library.

 lib – contains the LCDC LIDD libraries.

 src – Place holder for LCDC LIDD driver’s source code.

6.2.2 Build Options

The LCDC LIDD device driver can be built using the CCS v3.3 project file located at
<ID>\packages\ti\pspiom\lcdclidd\build\C6748\ccs3\lcdclidd.pjt. This project file
supports the following build configurations.

It can also be built using the CCS v4 project files located at
<ID>\packages\ti\pspiom\lcdclidd\build\C6748\ccs4

Page 63 of 234

C6748 BIOS PSP User Guide

Debug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

iDebug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines “Lcdc_DEBUGPRINT_ENABLE to enable LIDD driver to LOG debug
messages.

Release:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

iRelease:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

 Defines “Lcdc_DEBUGPRINT_ENABLE to enable LIDD driver to LOG debug
messages.

6.2.2.1 Required and Optional Pre-defined symbols
The LCDC LIDD library must be built with a soc specific pre-defined symbol.

“-DCHIP_C6748” is used above to build for C6748. Internally this define is used
to select a soc specific header file (soc_C6748.h). This header file contains
information such as base addresses of LCDC devices, their interrupt numbers,
etc.

If this define is missing, the following compile error will be thrown:

"No chip type defined! (Must use -DCHIP_C6748 or -DCHIP_C6748)"

The LCDC LIDD library can also be built with these optional pre-defined symbols.

Use -DPSP_DISABLE_INPUT_PARAMETER_CHECK when building library to turn
OFF parameter checking. This symbol is defined for Release and iRelease profiles
by default in the CCS 3.3 pjts provided.

Use -DNDEBUG when building library to turn off runtime asserts. This symbol is
defined for Release and iRelease profiles by default in the CCS 3.3 pjts provided.

Page 64 of 234

C6748 BIOS PSP User Guide

6.3 Features
This section details the features of LCDC LIDD (henceforth also referred to as LIDD)
and how to use them in detail.

6.3.1 Multi-Instance Usage

The LIDD driver can be used to operate the LCDC Controller in LIDD mode on the
C6748. Currently, only one driver instance for LIDD is supported during driver
creation time for the C6748. This is because there is only one LCDC LIDD on the
hardware. However, the driver is written in such a way as to support multiple
instances for when new SOCs are added which do have multiple controllers. A LCDC
LIDD driver instance for the C6748 should use a single instance with device ID 0.

This instance can be operated with configurations supported by The LIDD driver. The
device ID can be specified using the deviceId field of a UDEV instance (however,
only deviceId = 0 is supported).

There are two ways in which a new instance of the LIDD driver can be created.

1. Static creation – static creation is done in the “tcf” file of the application; this
creation happens at build time. It’s necessary to configure LCDC LIDD using the
UDEV module (UDEV.create). An instance of the UDEV module at static
configuration time corresponds to creating and initializing an LCDC LIDD
instance.

2. Dynamic creation – Dynamic creation of an LCDC LIDD instance is done in the
application source files by calling DEV_createDevice(); this creation happens at
runtime.

UDEV.create and DEV_createDevice allow user to specify the following:

 iomFxns: Pointer to IOM function table. LIDD requires this field to be
Lidd_IOMFXNS.

 initFxn: LCDC LIDD requires that the user call Lidd_init() as part of this
initFxn. Users can also directly hook in Lidd_init().

 device parameters: LCDC LIDD requires the user to pass an Lidd_Params
struct. This struct must exist in the application source files and it must be
initialized very early as part of driver specific initFxn.

 deviceId to identify the LCDC LIDD peripheral.

For more information on configuring UDEV, DIO and LCDC LIDD, please refer to the
LCDC LIDD sample application (included with this driver release), and the DSP/BIOS
API Reference (spru403o.pdf, included in your DSP/BIOS installation).

6.3.2 I/O using LIDD driver

The LIDD driver can operate only in output mode. This is because, the LCDC LIDD
controller can only output data onto the passive LCD displays. There is nothing to be
read. Hence, the driver only supports a “write” channel creation.

Page 65 of 234

C6748 BIOS PSP User Guide

6.4 Configurations
Following tables document some of the configurable parameter of LCDC LIDD device.
Please refer to Lidd.h for complete configurations and explanations.

6.4.1 Device Parameters

This structure defines the device configurations, expected to supply while
instantiating the driver.

Lidd_Params

Members Description

devConf The device configuration provided as a Lidd_DeviceConf
structure

6.4.1.1 Lidd_DeviceConf

This structure defines the LCDC device setting configuration.

Members Description

clkFreqHz MCLK frequency desired

hwiNum The HWI event number assigned to the group the LCDC
CPU event belongs to

numLines The number of lines in the display.

numCharPerLine The number of characters on each line in the display.

addressArray Array of line start addresses for each line incase of
character LCD

pscPwrmEnable Boolean flag to enable (TRUE) or disable (FALSE) any
power management in the driver

pllDomain Pll domain where the current device instance is connected.

Note:

Currently maximum of four line display is supported. The user needs to fill in the
addresses for all the lines even if using less than 4 lines. In this case, the user can
fill zero for the address for lines not used.

6.4.2 Channel Parameters

The channel parameters configure the raster controller operation and are described
below.

Lidd_ChanParams

Members Description

controller The controller type to be configured. This should be
configured as a Lidd_controller

chanConf The LIDD controller configuration, given as
Lidd_DisplayConf

Page 66 of 234

C6748 BIOS PSP User Guide

6.4.2.1 Display Configuration configuration

Lidd_DisplayConf

Members Description

displayType The type of display interfaced.

cs0Timing Strobe signal timong configuration for device connected on
CS0 chip select

cs1Timing Strobe signal timing configuration for device connected on
the CS1 chip select

chipSel This referes to the chip select on which the display device is
connected and this channel is created for.

6.5 Control Commands
Following some of the important control commands for the LIDD controller driver

Command Arguments Description

Lidd_IOCTL_CLEAR
_SCREEN

Pointer to ioctlCmdArg
type variable.

To clear the display
screen, connected on
chipSelect specified by
the ioctlCmdArg

Lidd_IOCTL_CURSO
R_HOME

Pointer to ioctlCmdArg
type variable.

To set the cursor to home
position, for the display
connected on the chipsel
specified by the
ioctlCmdArg

Lidd_IOCTL_SET_C
URSOR_POSITION

Pointer to
CursorPosition
structure

To set the cursor to a
particular position in the
display

Lidd_IOCTL_SET_D
ISPLAY_ON

Pointer to ioctlCmdArg
type variable.

To turn the display on for
the chipsel specified by
the ioctlCmdArg

Lidd_IOCTL_SET_D
ISPLAY_OFF

Pointer to ioctlCmdArg
type variable.

To turn the display off
for, the chipsel specified
by the ioctlCmdArg

Lidd_IOCTL_SET_B
LINK_ON

Pointer to ioctlCmdArg
type variable.

To turn the cursor blink
on for display, on the
chipsel specified by the
ioctlCmdArg

Lidd_IOCTL_SET_B
LINK_OFF

Pointer to ioctlCmdArg
type variable.

To turn the cursor blink
off for display, on the
chipsel specified by the
ioctlCmdArg

Lidd_IOCTL_SET_C
URSOR_ON

Pointer to ioctlCmdArg
type variable.

To show the cursor for
display, on the chipsel
specified by the
ioctlCmdArg

Lidd_IOCTL_SET_C Pointer to ioctlCmdArg To not show the cursor for

Page 67 of 234

C6748 BIOS PSP User Guide

URSOR_OFF type variable. display, on the chipsel
specified by the
ioctlCmdArg

Lidd_IOCTL_SET_D
ISPLAY_SHIFT_ON

Pointer to ioctlCmdArg
type variable.

To turn the display shift
on for display, on the
chipsel specified by the
ioctlCmdArg

Lidd_IOCTL_SET_D
ISPLAY_SHIFT_OFF

Pointer to ioctlCmdArg
type variable.

To turn the display shift
off for display, on the
chipsel specified by the
ioctlCmdArg

Lidd_IOCTL_CURSO
R_MOVE_LEFT

Pointer to ioctlCmdArg
type variable.variable
containing the
interrupt mask

To move the cursor left
display, on the chipsel
specified by the
ioctlCmdArg

Lidd_IOCTL_CURSO
R_MOVE_RIGHT

Pointer to ioctlCmdArg
type variable.variable
containing the
interrupt mask

To move the cursor right
display, on the chipsel
specified by the
ioctlCmdArg

Lidd_IOCTL_DISPL
AY_MOVE_LEFT

Pointer to ioctlCmdArg
type variable.variable
containing the
interrupt mask

To move the display left,
on the chipsel specified
by the ioctlCmdArg

Lidd_IOCTL_DISPL
AY_MOVE_RIGHT

Pointer to ioctlCmdArg
type variable.variable
containing the
interrupt mask

To move the display right,
on the chipsel specified
by the ioctlCmdArg

Lidd_IOCTL_COMMA
ND_REG_WRITE Pointer to Integer

type variable

A generic IOCTL to write a
command word to the
Character display

6.6 Use of LIDD driver through GIO APIs

6.6.1 GIO_create

Parameter
Number

Parameter
Specifics to Lidd

1 Device Name string

Unique identifier used to identify this
driver. Please note the name should be
same as specified while creating the
driver. (Either through tcf or
DEV_createDevice()

2 Channel Mode

Should be “IOM_INPUT” when UART
requires to received data and
“IOM_OUTPUT” when UART requires to
transmit

Page 68 of 234

C6748 BIOS PSP User Guide

3 Status Address to place return status from Uart.

4 Channel Params Pointer to chanParams structure for Uart
channel.

5 GIO_Attrs * Parameters required for the creation of the
GIO instance (e.g. channel parameters)

6.6.2 GIO_control

Parameter
Number

Parameter Specifics to Raster

1 GIO_Handle Handle returned by GIO_create

2 Command IOCTL command defined by UART driver

3 Arguments Misc arguments if required by the command

6.6.3 GIO_write

Parameter
Number Parameter Specifics to Raster

1 Channel Handle Handle returned by GIO_create

2 Pointer to buffer Should be pointer buffer that holds the
transmit data or shall hold the receive data.

3 Pointer to size of
buffer

Size of the transaction

6.7 Sources that need re-targeting

6.7.1 ti/pspiom/cslr/soc_C6748.h (soc specific header file):

This file contains target (SoC) specific definitions. In most cases, changing the values
for the SoC specific details done here should suffice. However, if there are major
changes in the hardware instance then the driver file may be needed to change.

6.8 EDMA3 Dependency
The LIDD controller driver does not rely on the EDMA LLD driver. The controller
interacts with an independent DMA controller provided to it and does not use any
EDMA3 paramsets.

6.9 Known Issues
Please refer to the top level release notes that came with this release.

6.10 Limitations
 The LCDC controller on C6748 has two modes of operation. One is the Raster

mode and the other is the LIDD mode. However, only one mode can be
operation can be chosen at a time. Following this constraint, the drivers for

Page 69 of 234

C6748 BIOS PSP User Guide

these two modes have been separated out and the each mode has a different
driver/module, namely Raster and Lidd. Only one driver should be used at a
time.

For other limitations, please refer to the top level release notes that came with this
release.

6.11 LIDD Sample Application

6.11.1.1 Description

This sample demonstrates the use of the LCDC LIDD driver.

The LCDC LIDD driver along with the required component modules are configured
statically in liddSample.tci file. It also instantiates the I2C driver to configure the I2C
GPIO expander on UI board, to configure it to select routing of signals the raster
display.

The liddSample.tcf file contains the remaining BIOS configuration like the
configuration of the event combiner etc. This helps to map the LCDC events to the
CPU interrupts.

The main () function configures the PINMUX and uses the Psc module to enable the
LCDC peripheral. It creates a task ‘liddSampleTask()’ to run the sample application.

The liddSampleTask() task exercises the LIDD driver. It also, utilizes the I2C driver
to read/write to the I2C GPIO expander on the UI board to route the LCDC signals to
the display.

It uses Stream APIS to create I2C and LCDC LIDD driver channels and also to
perform the IO operations.

6.11.1.2 Build:

 This sample can be built using the CCS3 or CCS4 interface.

IMPORTANT NOTE: The I2C driver contains EDMA references, and hence, user should
ensure that the EDMA package path is properly taken care of in the project.

There is also facility for users to compile the project using the command line. The file
package.bld takes care of the necessary steps to compile the project from command
line.

Please refer to the “Integration Guide” section for more details about building the
project.

6.11.1.3 Setup:

 The Raster display should be removed from the C6748 Interface Module (UI
board)

 The 24x2 character display should be plugged on the UI board.

 The “R104” potentiometer should be adjusted to provide sufficient voltage
(4.5-4.7V). To verify ensure this see that first line of display shows 24
squares glowing brightly.

6.11.1.4 Output:

When the sample is run a Welcome scrolling message is displayed on the character
display module and the sample application performs some operations on the same.

Page 70 of 234

C6748 BIOS PSP User Guide

7 SPI driver

7.1 Introduction
This document is the reference guide for the device driver which explains the
features and tips to use them.

DSP/BIOS applications use the driver typically through APIs provided by the GIO
layer, in order to transmit and receive serial data. The following sections describe in
detail the necessary procedures to configure and use this driver, as well as other
additional information. It is recommended to go through the sample application to
get a feel of initializing and using the Spi driver.

7.1.1 Key Features

 Multi-instanceable and re-entrant driver

 Each instance can operate as an receiver and or transmitter

 Supports Polled, Interrupt and DMA Interrupt Mode of operation

 Supports using the GPIOs (External to SPI) to be used as additional
chipselects.

7.2 Installation
The SPI device driver is a part of PSP package for the C6748 and would be installed
as part of whole package installation. For high level design information please refer
to the driver architecture guide that came with this package (available at
<ID>\ti\pspiom\spi\docs).

7.2.1 SPI Component folder

On installation of PSP package for the C6748, the SPI driver can be found at <ID>\
ti\psp\spi\

As show above the spi folder contains several sub-folders, the contents of which are
described below.

 spi - The spi folder is the place holder for the entire SPI driver, documents
and the build configuration files. This folder contains Spi.h, which is the
header file included by the application.

 build - contains CCS 3.3 / CCS 4 project files to build the SPI library.

 docs – Contains doxygen generated API reference.

 src – Contains the SPI driver’s source code.

7.2.2 Build Options

The SPI library can be built using the CCS v3.3 project file located at
<ID>\packages\ti\pspiom\spi\build\C6748\ccs3\spi.pjt. This project file supports the
following build configurations.

It can also be built using the CCS v4 project files located at
<ID>\packages\ti\pspiom\spi\build\C6748\ccs4

Page 71 of 234

C6748 BIOS PSP User Guide

IMPORTANT NOTE:

All build configurations require environment variable
%EDMA3LLD_BIOS5_INSTALLDIR% to be defined. This variable must point to
“<EDMA3_INSTALL_DIR>\packages”.

Debug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines “-DSpi_EDMA_ENABLE” to enable EDMA3 support in SPI driver. It also
contains “-i%EDMA3LLD_BIOS5_INSTALLDIR%” to find EDMA3 header files.

iDebug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines “-DSpi_EDMA_ENABLE” to enable EDMA3 support in Spi driver. It also
contains “-i%EDMA3LLD_BIOS5_INSTALLDIR%” to find EDMA3 header files.

 Defines “Spi_DEBUGPRINT_ENABLE to enable Spi driver to LOG debug
messages.

Release:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines “-DSpi_EDMA_ENABLE” to enable EDMA3 support in Spi driver. It also
contains “-i%EDMA3LLD_BIOS5_INSTALLDIR%” to find EDMA3 header files.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

iRelease:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines “-DSpi_EDMA_ENABLE” to enable EDMA3 support in Spi driver. It also
contains “-i%EDMA3LLD_BIOS5_INSTALLDIR%” to find EDMA3 header files.

 Defines “Spi_DEBUGPRINT_ENABLE to enable Spi driver to LOG debug
messages.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

7.2.2.1 Required and Optional Pre-defined symbols
The Spi library must be built with a soc specific pre-defined symbol.

“-DCHIP_C6748” is used above to build for C6748. Internally this define is used
to select a soc specific header file (soc_C6748.h). This header file contains
information such as base addresses of SPI devices, their event numbers, etc.

The Spi library can also be built with these optional pre-defined symbols.

Use –DSpi_EDMA_ENABLE when building library to enable DMA support in Spi
driver. If this symbol is not defined edma specific code will get eliminated and the
driver can be used only in POLLED or INTERRUPT mode.

Page 72 of 234

C6748 BIOS PSP User Guide

Use -DPSP_DISABLE_INPUT_PARAMETER_CHECK when building library to turn
OFF parameter checking. This symbol is defined for Release and iRelease profiles
by default in the CCS 3.3 pjts provided.

Use -DNDEBUG when building library to turn off runtime asserts. This symbol is
defined for Release and iRelease profiles by default in the CCS 3.3 pjts provided.

7.3 Features
This section details the features of SPI and how to use them in detail.

7.3.1 Multi-Instance

The SPI driver can operate on all the instances of SPI on the EVM 6748. Different
instances may be specified during driver creation time, and instances 0 through 2
with corresponding device IDs 0 through 2 are supported, respectively.

These instances can operate simultaneously with configurations supported by the SPI
driver. SPI instances are created as follows:

1. Static creation – static creation is done in the “tcf” file of the application;
this creation happens at build time. The UDEV module (UDEV.create) is
used during static configuration. An instance of the UDEV module at static
configuration time corresponds to creating and initializing an SPI instance

2. Dynamic creation – Dynamic creation of an SPI instance is done in the
application source files by calling DEV_createDevice(); this creation
happens at runtime.

UDEV.create and DEV_createDevice allow user to specify the following:

 iomFxns: Pointer to IOM function table. SPI requires this field to be
Spi_IOMFXNS.

 initFxn: SPI requires that the user call Spi_init() as part of this initFxn.
Users can also directly hook in Spi_init().

 device parameters: SPI requires the user to pass an Spi_Params struct. This
struct must exist in the application source files and it must be initialized very
early as part of driver specific initFxn.

 deviceId to identify the SPI peripheral.

For more information on configuring UDEV and SPI, please refer to the Spi sample
application (included with this driver release), and the DSP/BIOS API Reference
(spru403o.pdf, included in your DSP/BIOS installation).

7.3.2 Each Instance as Transmitter and / or receiver

Each SPI instance can be used for creating channels for transmit and receive
operation. The same channel can be used for both transmit and receive operation.
This could be achieved by opening a stream Channel as an INOUT channel . The type
of Channel is specified while creating the channel (using GIO_create() and
specifying “IOM_INOUT”). The configuration parameters are explained in the sections
to follow.

7.3.3 Supports using the GPIOs (External to SPI) to be used as additional chipselects

In scenario where the number of SPI slaves on the EVM are more than the number of
native CS lines of the SPI master on the SOC, this feature comes for help.

Page 73 of 234

C6748 BIOS PSP User Guide

Free GPIOs could be used for this purpose and if programmed properly, SPI driver
internally talks to GPIO driver to toggle the state of corresponding GPIO to act as CS
signal. Detailed information is given below on how to configure the SPI driver for this
purpose

7.4 Power management Considerations
The SPI driver supports the V/F scaling and sleep mode power management
features. The following points should be kept in mind when working with the power
management enabled.

 The SPI driver cannot be operated in the salve mode with the power
management feature enabled.

For other details on the power management support please refer to Power
Management

7.5 Configurations
Following tables document some of the configurable parameter of SPI. Please refer to
Spi.h for complete configurations and explanations.

7.5.1 Spi_Params

This structure defines the device configurations, expected to supply while creating
the driver.

Members Description

enableCache
This option is used if the driver should take care of
validating/invalidating the cache for the buffers
provided by the user.

opMode Whether the SPI driver should operate in Polled or
Interrupt or DMA Interrupt Mode

outputClkFreq The clock frequency the SPI instance should generate
in case of master mode of operation

loopbackEnabled If the driver/device works in loopback mode

polledModeTimeout The data transfer timeout for polled mode of operation

spiHWCfgData The configuration of hardware instance specifc options

edmaHandle Handle to PSP EDMA LLD driver

hwiNumber The hardware interrupt number assigned for SPI
events

pscPwrmEnable Boolean flag to enable (TRUE) or disable (FALSE) any
power management in the driver

pllDomain PLL domain where the current instance of the device is
connected

Note: Please note that in slave mode, power management is not supported.

Apart from the instance parameters described above module wide constants declared
in Spi.h can be changed e.g Spi_BUFFER_DATA_SIZE. These constants apply to all
Spi instances. Communication mode of operation whether the instance is acting as a
slave or master may also be configured.

Page 74 of 234

C6748 BIOS PSP User Guide

Additionally, Build options can be added or removed to add/remove features. e.g –
DSpi_EDMA_ENABLE.

7.5.2 Spi_ChanParams

Applications could use this structure to configure the channel specific configurations.

Members Description

hEdma

The handle to the EDMA driver. Required only when
operating in DMA interrupt mode. Also, note that when
operating in DMA interrupt mode, the necessary define
switch –DSpi_EDMA_ENABLE should be thrown, as
described in section “Build Options".

hGpio
The handle to the GPIO driver. Required only when
using any GPIOs for CS operation.

Please note that the EDMA LLD driver supports multiple instances of the EDMA
hardware (2 in case of C6748). The handles to these instances will be valid after
calling the edma3init() API. The application should then appropriately pass the EDMA
handle via hEdma field above (hEdma[0] or hEdma[1]). If the application is
instantiating the driver for device instance number 0 and EDMA event from this
device instance are mapped to EDMA controller 0 then the application has to pass
hEdma[0].

7.5.3 Spi_DataParam

This buffer is used to submit data transfer requests to the SPI driver.

Members Description

outBuffer
Pointer to the output buffer specified by the
application. Can be specified as NULL in case of only
read operation

inBuffer
Pointer to the buffer to hold the input data. Can be
specified as NULL in case of only write operation.

bufLen
Total buffer length. Should be the size of the total
transceive operation.

chipSelect
The chip select to be used for selecting the slave
device.

dataFormat
The data format to be used by the SPI (out of the 4
different data formats supported by it.)

flags
Flags to indicate the current operation (Read/write
etc).

param Parameter kept for future use.

gpioPinNum
Specifies which pin should be used as CS in case of
GPIO CS

Page 75 of 234

C6748 BIOS PSP User Guide

csToTxDelay
Specifies the delay between CS assertion and start of
I/O transfer

Note:

 The SPI driver is in transceive mode hence it is required to provide both the input
and output buffers in case of a transceive operation. In case that the application
wants to perform either a read only or write only operation, it is sufficient for it to
provide the input buffer or the output buffer only. The other buffer can be
specified as NULL.

 The “chipSelect” parameter specifies which chip select(s) should be used for the
current transaction. This parameter is a bitmask of chip selects that are required
to be used. For example if chip select 0 and 2 are to be used (0 being the first
chip select) then the “chipSelect” should contain a mask = 0x101. Note that bit 0
and bit 2 are set to indicate the use of chipselect 0 and chipselect 2. This
configures the appropriate bits (0 and 2) in SCS0FUN field of the SPIPC0 register
along with “csDefault” parameter value as described below.

 The “csDefault” parameter in the “spiHWCfgData” of device parameter specifies
the configuration bitmask for chip select(s) state in the inactive period. If
suppose, chip select 0 and chip select 2 are to used with the respective chip
select lines to be high in the inactive state (active high chip select behavior), then
“csDefault” should be like 0x101. This value is set in the CSDEF field of the
SPIDEF register.

 Spi_IOCTL_SET_CS_POLARITY can be used to toggle the polarity of “csDefault”
values. If “isCsActiveHigh” of the command argument (Spi_CsPolarity structure)
is FALSE, then the respective bits in “csMask” of the command argument, is set
in “csDefault”. If “isActiveHigh” of the command argument is TRUE, then the
respective bits in “csMask” of the command argument, is reset in “csDefault”.

 If it is required that CS0 and CS2 are to be used in active low configuration, then
“csDefault” should be 0x101 (inactive high or active low), “chipSelect” should be
0x101. If it is required that CS0 and CS2 are to be used in active high
configuration, then “csDefault” should be 0x000 (inactive low or active high),
“chipSelect” should be 0x101.

7.5.4 Polled Mode

The configurations required for polled mode of operation are:

Instance configuration opMode should be set to Spi_OpMode_POLLED. Additionally
the timeout parameter for the data transfer operation can be configured as required.
For example, polledModeTimeout could be set to 1000 Ticks, while the default value
is WAIT_FOREVER.

For polled mode of operation the driver does not implement the task sleeping in
between checks for data ready status, during data transfer. This is because, while in
sleep the data may arrive and the data may go unread. This can be more prevalent
with increasing data clock frequencies. This non use of task sleep results in a tight
while loop for checking data ready status during transfers and may block out other
tasks in the system from executing, for the timeout duration set by the user. Hence,
it is advised that in slave mode interrupt mode of operation may be used.

7.5.5 Interrupt Mode

The configurations required for interrupt mode of operation are:

Page 76 of 234

C6748 BIOS PSP User Guide

Instance configuration opMode should be set to Spi_OpMode_INTERRUPT.
Additionally the hwiNumber assigned by the application for the SPI CPU events group
should be passed, so that the driver can enable proper interrupts.

It is recommended to start from the sample application and modify it further to meet
the need of the actual application.

7.5.6 DMA Interrupt Mode

The configurations required for DMA Interrupt mode of operation are:

Instance configuration opMode should be set to Spi_OpMode_DMAINTERRUPT.
Additionally the hwiNumber assigned by the application for the SPI CPU events group
should be passed, so that the driver can enable proper interrupts. Also, as part of
chanParams, the handle to the EDMA driver, hEdma, should be passed by the
application.

Note that -DSpi_EDMA_ENABLE define should be supplied as a compiler switch for
proper operation in this mode, so the sample application initializes the edma driver
and passes the appropriate chanParams.

It is recommended to start from the sample application and modify it further to meet
the need of the actual application.

7.5.7 Slave Mode

The option of slave mode (or master mode) of operation, should be supplied along
with the Spi_HWConfigData (device parameter) structure (masterOrSlave field) in
the Spi device parameters, when creating an instance of the module. This is because
the mode of operation is fixed for one instance and cannot be changed dynamically
or per-channel per instance. Also note that in slave mode of the device only one
channel can be opened.

Note that -DSpi_EDMA_ENABLE define should be supplied as a compiler switch for
proper operation in this mode, so the sample application initializes the edma driver
and passes the appropriate chanParams.

Please note the following

 (a) Application protocol also needs to consider the latency caused by software
slave implementation. (b) The driver does not support “0” no of byte transfer.

7.6 Control Commands
Following table describes some of important the control commands, for a
comprehensive list please refer the ICOTL defined in Spi.h.

Command Arguments Description

Spi_IOCTL_CANCEL_PENDI
NG_IO None Cancels all the pending I/O

requests

Spi_IOCTL_SET_CS_POLAR
ITY

Spi_CsPolarit
y *

Configures the CS polarity to
High or Low

Spi_IOCTL_SET_POLLEDMO
DETIMEOUT UInt32 * To change the value for

polled mode timeout

Page 77 of 234

C6748 BIOS PSP User Guide

7.7 Use of SPI driver through GIO APIs
The following sections explain the use of parameters of GIO calls in the context of
the PSP driver. Note that no effort is made to document the use of GIO calls; any SPI
specific requirements are covered below.

7.7.1 GIO_create

Parameter
Number

Parameter Specifics to SPI

1 Device Name string

Unique identifier used to identify this
driver. Please note the name should be
same as specified while creating the
driver. (Either through TCF or
DEV_createDevice()

2 Channel Mode
Should be “IOM_INPUT” when SPI requires
to received data and “IOM_OUTPUT” when
SPI requires to transmit

3 GIO_Attrs * Parameters required for the creation of the
GIO instance (e.g. channel parameters)

7.7.2 GIO_control

Parameter
Number Parameter Specifics to SPI

1 GIO_handle Handle returned by GIO_create

2 Command IOCTL command defined by SPI driver

3 Arguments Misc arguments if required by the
command

7.7.3 GIO_write/read

Parameter
Number

Parameter Specifics to SPI

1 Channel Handle Handle returned by GIO_create

2 Pointer to buffer
Should be pointer to variable of type
Spi_DataParam.

3 Size Size of the transaction

7.8 Use of GPIO as chip select
In some cases where the SPI slaves that require CS signal is more than that could be
supported by the SPI peripheral, an unused GPIO pin could be used to generate chip
select signal/lines.

The SPI driver supports this feature of using a GPIO pin as chip select, by using GPIO
module calls internally. (Please refer to GPIO user guide for details on GPIO module)

Page 78 of 234

C6748 BIOS PSP User Guide

Following are the steps to enable and use this feature in the applications:

1. Creation of GPIO instance

a. Create a handle to the GPIO module in the application C file :

Example:

 /* start with the default params */

 Gpio_Params gpioParams = Gpio_PARAMS;

 /* update the gpio parameters to our needs */

 gpioParams.instNum = 0;

/* Let us assume GP0_13 –One needs to mark this pin and the associated
back as not in use as anything else in the system. Also, in this use case
ignore hwiNum */

 gpioParams.BankParams[0].inUse = Gpio_InUse_No;

 gpioParams.BankParams[0].hwiNum = 9;

 /*

 It is to be noted here that the pin numbers in GPIO peripheral user guide

 starts from 1 and end at N. However the GPIO params uses arrays to maintain

 the pin and bank configuration info. Hence, respective position for this

 pin in the array will be (pinNumber-1).

 */

 gpioParams.BankParams[0].PinConfInfo[12].inUse = Gpio_InUse_No;

 gpioParams.BankParams[0].PinConfInfo[12].inUse = Gpio_InUse_No;

 /* open the GPIO driver to get a handle to it */

 gpio0 = Gpio_open(&gpioParams);

This GPIO driver handle should be passed as part of channel parameter
(hGpio) during channel creation. The GPIO CS operation is un-defined without
a valid GPIO handle.

2. GPIO pin as chip select for each data transfer

a. The driver facilitates selection between the CS signal or GPIO signal to be
used as Chip Select, for every transfer. If Spi_DataParam.flags contains
Spi_GPIO_CS then GPIO line will be used as chip select else, the CS signal will
be used as chip select. Thus, each transfer (read/write) could be destined for
a slave on CS or GPIO.

 Example:

Spi_DataParam dataparam;

/* GPIO CS is supported only with CSHOLD feature */

dataParam.flags = Spi_GPIO_CS | Spi_CSHOLD;

Here the slave on GPIO is selected, else the slave on CS selected

b. Specify the GPIO pin number to be used as CS.

Example:

dataParam. gpioPinNum = 13

Page 79 of 234

C6748 BIOS PSP User Guide

Note:

The chip select signal generated on the GPIO pin has the following constraints:

a. GPIO chip select and native chip select functionality are not supported
together in a single submit.

b. This, GPIO as chip select, feature is done by driver in software. Hence, it
may not satisfy the strict timing requirements like a normal CS signal. For
instance, the GPIO used as chip select is activated and deactivated just
before actually writing the first word into SPIDAT and deactivated after a
data transfer (word or whole request, depending on Spi_CSHOLD in
Spi_DataParam.flags) is complete. So, here one can see that GPIO chip
select is activated a little earlier than required and deactivated a little later
than required. This adds to some latency in throughput of transfers.

c. GPIO as chip select feature is available only if Spi_CSHOLD flag is included
in the Spi_DataParams.flags for every transfer.

d. The GPIO pin used as CS is selectable for every transfer since the GPIO
pin number is part of the dataParam.

e. The delay required between CS assertion and start of data transfer (clock
out) is programmable via “csToTxDelay” of the Spi_DataParam structure
for each transfer. However, this delay parameter is just a count that is
used in a tight loop inside. This delay loop is not calibrated and the
application should adjust this parameter as required.

f. If required GPIO CS polarity can be set as required before each transfer
by using the Spi_IOCTL_SET_CS_POLARITY ioctl command request.

7.9 Sources that need re-targeting

7.9.1 ti/pspiom/cslr/soc_C6748.h (soc specific header file):

This file contains target (SoC) specific definitions. In most cases, changing the values
for the SoC specific details done here should suffice. However, if there are major
changes in the hardware instance then the driver file may be needed to change.

7.10 Use of GPIO as chip select
Any available GPIO pin can be configured as SPI Chip select pin. The user can select
any free available GPIO pin and set the gpioChipselectFlag, to use that GPIO pin as
SPI chip select pin.

7.11 EDMA3 Dependency
SPI driver relies on EDMA3 LLD driver to move data from/to application buffers to
peripheral; typically EDMA3 driver is PSP deliverable unless mentioned otherwise.
Please refer to the release notes that came with this release. Please ensure that
current PSP release is compliant with version of EDMA3 driver being used.

7.11.1 Used Paramset of EDMA 3
SPI driver uses TWO paramsets of EDMA3; if there are no paramsets are available the PSP
driver creation would fail. These paramsets are used through the life time of PSP driver. No link
paramsets are used.

Page 80 of 234

C6748 BIOS PSP User Guide

7.12 Known Issues
Please refer to the top level release notes that came with this release.

7.13 Limitations
Please refer to the top level release notes that came with this release.

7.14 Spi Sample applications

7.14.1 Interrupt mode sample

7.14.1.1 Description:

This sample demonstrates the use of the Spi driver in interrupt mode.

This example uses the Spi bus to write an array of data to the W25X32 Spi flash
memory of the EVM 6748. Once the data has been written, the Spi bus again is used
to read the same data from the spi flash memory. The data read is then compared
with the data that was written, and if it matches then the operation is considered a
success.

The reads and writes to the spi flash memory are accomplished by use of both the
Spi and the GIO modules, in combination. The Spi driver is used to configure and
set up the Spi bus, and the GPIO module APIs are used to perform the actual reads
and writes to the spi flash memory, via the Spi bus.

The Spi driver is configured both statically in the spiSample.tci and
spiSample.tcf files, as well as at run time in the spiSample_main.c and
spiSample_io.c files.

The spiSample.tcf file contains important BIOS configuration settings, which
are required in order for the Spi operations to work properly. The most important
lines in this file are:

bios.ECM.ENABLE = 1;

bios.HWI.instance("HWI_INT8").interruptSelectNumber = 1;

The above configuration settings are needed to correctly set up the ECM
module and map the Spi event to CPU interrupt. For example the Spi event number
is 37, which falls under ECM group 1. Here ECM group 1 is mapped to HWI_INT8,
and this is the HWI number used when configuring spiParams at runtime (explained
further below).

Further Spi static configuration is done in the spiSample.tci file, which uses the UDEV
module to configure the user defined init function “SpiUserInit”, and also hook in the
Spi instance parameters (spiParams).

At run time, this results in the Spi user defined init function to be called before the
main() function. This function in turn calls the actual Spi_init() function (a
requirement if a user defined init function is used), and then sets up the user’s Spi
instance parameters via “spiParams”.

Once initialization has completed, the main() function runs, configuring the PINMUX.
Following this, the user defined task “echoTask()” runs, which creates GIO Spi read
and write handles. These handles are then used when calling the GIO_submit() API
to actually write and read data to and from the spi flash memory.

7.14.1.2 Build:

 This sample can be built using

Page 81 of 234

C6748 BIOS PSP User Guide

<ID>/packages/ti/pspiom/examples/evm6748/spi/interrupt/build/ccs3/spiSample.pjt

IMPORTANT NOTE: spiSample.pjt contains references to
%EDMA3LLD_BIOS5_INSTALLDIR% environment variable and links with edma3
libraries. This is required because by default the Spi driver library is built with –
DSpi_EDMA_ENABLE. The user can remove all references of EDMA3 from
spiSample.pjt if he re-builds the Spi library without –DSpi_EDMA_ENABLE.

7.14.1.3 Setup:

No special setup is needed to run the Spi example

Warning: Please note that the sample application erases the FLASH during
the execution, before it starts with the read/write test

7.14.1.4 Output:

When the sample runs, it will output the following:
write is Enabled

write is Enabled

BIOS SPI:SPI sample transceive ended successfully

!!! PSP HrtBt

!!! PSP HrtBt

............

7.14.2 Dma mode sample

7.14.2.1 Description:

This sample demonstrates the use of the Spi driver in EDMA mode. In EDMA mode,
the Spi driver uses DMA for data transfers, instead of the CPU.

This example uses the Spi bus to write an array of data to the W25X32 Spi
flash memory of the EVM 6748. Once the data has been written, the Spi bus again is
used to read the same data from the spi flash memory. The data read is then
compared with the data that was written, and if it matches then the operation is
considered a success.

The reads and writes to the spi flash memory are accomplished by use of both
the Spi and the GIO modules, in combination. The Spi driver is used to configure
and set up the Spi bus, and the GIO module APIs are used to perform the actual
reads and writes to the spi flash memory, via the Spi bus.

The Spi driver is configured both statically in the spiSample.tci and
spiSample.tcf files, as well as at run time in the spiSample_main.c and
spiSample_io.c files.

The spiSample.tcf file contains important BIOS configuration settings, which
are required in order for the Spi operations to work properly. The most important
lines in this file which the user would need in their application are:

bios.ECM.ENABLE = 1;

bios.HWI.instance("HWI_INT7").interruptSelectNumber = 0;

bios.HWI.instance("HWI_INT8").interruptSelectNumber = 1;

bios.HWI.instance("HWI_INT9").interruptSelectNumber = 2;

Page 82 of 234

C6748 BIOS PSP User Guide

bios.HWI.instance("HWI_INT10").interruptSelectNumber = 3;

The above configuration settings are needed to correctly set up the ECM module and
map the EDMA events to CPU interrupts. Since the CPU is not used in Spi transfers
in EDMA mode, these ECM groups must be mapped to the EDMA events as shown.

Further Spi static configuration is done in the spiSample.tci file, which uses
the UDEV module to configure the user defined init function “SpiUserInit”, and also
hook in the Spi instance parameters (spiParams).

At run time, this results in the Spi user defined init function to be called
before the main() function. This function in turn calls the actual Spi_init() function
(a requirement if a user defined init function is used), and then sets up the user’s
Spi instance parameters via “spiParams”.

Once initialization has completed, the main() function runs, configuring the
PINMUX. Following this, the user defined task “echoTask()” runs, which creates GIO
Spi read and write handles. These handles are then used when calling the
GIO_submit() API to actually write and read data to and from the spi flash memory.

7.14.2.2 Build:

 This sample can be built using

<ID>/packages/ti/pspiom/examples/evm6748/spi/edma/build/ccs3/spiSample.pjt

IMPORTANT NOTE: spiSample.pjt assumes that the Spi driver library is built with –
DSpi_EDMA_ENABLE.

7.14.2.3 Setup:

No special setup is needed to run the Spi example

Warning: Please note that the sample application erases the FLASH during
the execution, before it starts with the read/write test

7.14.2.4 Output:

When the sample runs, it will output the following:
EDMA3 : edma3init() passed

write is Enabled

write is Enabled

BIOS SPI:SPI sample transceive ended successfully

!!! PSP HrtBt

!!! PSP HrtBt

Page 83 of 234

C6748 BIOS PSP User Guide

8 PSC driver

8.1 Introduction
This document is the reference guide for the device driver which explains the
features and tips to use them.

DSP/BIOS applications use the driver directly to configure the Psc peripherals. The
following sections describe in detail, procedures to use this driver. It is recommended
to go through the sample applications to get familiar with using the Psc driver.

8.1.1 Key Features

 Does NOT support instances. Simple module level functions.

 Standalone module (driver) ; does not implement IOM interface.

8.2 Installation
The Psc device driver is a part of PSP product for EVM 6748 and would be installed as
part of whole package installation.

8.2.1 PSC Component folder

On installation of PSP package for C6748, the PSC driver can be found at <ID>\
ti\pspiom\psc

As show above the psc folder contains sub-folder, contents of which are described
below.

 psc - The psc folder is the place holder for the entire PSC driver. This folder
contains Psc.h which is the header file included by the application.

 build – contains CCS 3.3 / CCS 4 project file to build Psc library.

 docs – Contains doxygen generated API reference.

 lib – contains Psc libraries

 src – contains Psc driver’s source code.

8.2.2 Build Options

The Psc library can be built using the CCS v3.3 project file located at
<ID>\packages\ti\pspiom\psc\build\C6748\ccs3\psc.pjt. This project file supports
the following build configurations.

IMPORTANT NOTE:

All build configurations require environment variable
%EDMA3LLD_BIOS5_INSTALLDIR% to be defined. This variable must point to
“<EDMA3_INSTALL_DIR>\packages”.

Debug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

Page 84 of 234

C6748 BIOS PSP User Guide

iDebug

Release

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

8.3 Features
This section details the features of PSC and how to use them in detail.

8.4 Use of PSC driver through module APIs
Following sections explain the use of parameters of module calls in the context of
PSP driver. Any PSP specific requirements are covered below.

8.4.1 Psc_ModuleClkCtrl

Parameter
Number

Parameter Specifics to PSP

1 Psc device Id Psc_DevId_0 or Psc_DevId_1

2 Module Id LPSC number for module

3 isClockEnabled TRUE or FALSE

This call returns enables/disables the clock domain for the module specified. The
sample applications (PSC does not have a separate sample application) all use Psc
APIs to configure enable the peripherals.

8.5 Sources that need re-targeting

8.5.1 ti/pspiom/cslr/soc_C6748.h (soc specific header file):

This file contains target (SoC) specific definitions. In most cases, changing the values
for the SoC specific details done here should suffice. However, if there are major
changes in the hardware instance then the driver file may be needed to change.

8.6 EDMA3 Dependency
The PSC driver does not depend on the EDMA3 LLD driver. It does not support any
data transfer operations.

8.7 Known Issues
Please refer to the top level release notes that came with this release.

8.8 Limitations
Please refer to the top level release notes that came with this release.

Page 85 of 234

C6748 BIOS PSP User Guide

9 Mcasp driver

9.1 Introduction
This document is the reference guide for the Mcasp device driver which explains the
features and guidelines for using the driver.

DSP/BIOS applications use the driver typically through APIs provided by SIO layer,
to transmit and receive audio data. The following sections describe in detail, the
procedures to use this driver and configure it. It is recommended to go through the
sample application to get familiar with initializing and using the Mcasp driver.

9.1.1 Key Features

 Multi-instance support and re-entrant driver

 Each instance can operate as a receiver and or transmitter.

 Supports multiple data formats.

 Can be configured to operate in multi-slot TDM, I2S, DSP and DIT (S/PDIF).

 Mechanism to transmit desired data (such as NULL tone) when idle.

 Explicit control of PIN directions for High Clock, Bit Clock and Frame Sync
PINS by the driver.

9.1.2 Terms and Abbreviations

API Application Programmer’s Interface

CSL TI Chip Support Library – primitive h/w abstraction.

IP Intellectual property

ISR Interrupt Service Routine

OS Operating System

S/PDIF Sony Philips Digital Interface

TDM Time Division Multiplexing

I2S Inter-Integrated Sound Format

ID Installation Directory

9.1.3 References

1 SPRUFM1 C6748 McASP Reference Guide

2 TLV320AIC31IRHBRG4_3960631 Stereo Audio Codec Data Manual

Page 86 of 234

C6748 BIOS PSP User Guide

9.2 Installation
The Mcasp device driver is a part of PSP product for C6748 and would be installed as
part of product installation.

9.2.1 PSP Component folder

On installation of the PSP package for C6748, the PSP driver can be found at <ID>\
ti\pspiom\mcasp

As shown above the mcasp folder contains several sub-folders, the contents of which
are described below:

 Mcasp - The Mcasp folder is the place holder for the entire Mcasp driver. This
folder contains Mcasp.h which is the header file included by the application.

 build – contains CCS 3.3 / CCS 4 project file to build Mcasp library.

 docs – Contains doxygen generated API reference.

 lib – contains Mcasp libraries

 src – contains Mcasp driver’s source code.

9.2.2 Build Options

The Mcasp library can be built using the CCS v3.3 project file located at
<ID>\packages\ti\pspiom\mcasp\build\C6748\ccs3\mcasp.pjt. This project file
supports the following build configurations.

It can also be built using the CCS v4 project file located at
<ID>\packages\ti\pspiom\mcasp\build\C6748\ccs4

IMPORTANT NOTE:

All build configurations require environment variable
%EDMA3LLD_BIOS5_INSTALLDIR% to be defined. This variable must point to
“<EDMA3_INSTALL_DIR>\packages”.

Debug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines “-DMcasp_EDMA_ENABLE” to enable EDMA3 support in Mcasp driver.
It also contains “-i%EDMA3LLD_BIOS5_INSTALLDIR%” to find EDMA3 header
files.

iDebug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines “-DMcasp_EDMA_ENABLE” to enable EDMA3 support in Mcasp driver.
It also contains “-i%EDMA3LLD_BIOS5_INSTALLDIR%” to find EDMA3 header
files.

 Defines “Mcasp_DEBUGPRINT_ENABLE to enable Mcasp driver to LOG debug
messages.

Page 87 of 234

C6748 BIOS PSP User Guide

Release:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines “-DMcasp_EDMA_ENABLE” to enable EDMA3 support in Mcasp driver.
It also contains “-i%EDMA3LLD_BIOS5_INSTALLDIR%” to find EDMA3 header
files.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

iRelease:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines “-DMcasp_EDMA_ENABLE” to enable EDMA3 support in Mcasp driver.
It also contains “-i%EDMA3LLD_BIOS5_INSTALLDIR%” to find EDMA3 header
files.

 Defines “Mcasp_DEBUGPRINT_ENABLE to enable Mcasp driver to LOG debug
messages.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

9.2.2.1 Required and Optional Pre-defined symbols

The Mcasp library must be built with a soc specific pre-defined symbol.

“-DCHIP_C6748” is used above to build for EVM 6748. Internally this define is
used to select a soc specific header file (soc_C6748.h). This header file contains
information such as base addresses of mcasp devices, their event numbers, etc.

The Mcasp library can also be built with these optional pre-defined symbols.

Use -DPSP_DISABLE_INPUT_PARAMETER_CHECK when building library to turn
OFF parameter checking. This symbol is defined for Release and iRelease profiles
by default in the CCS 3.3 pjts provided.

Use -DNDEBUG when building library to turn off runtime asserts. This symbol is
defined for Release and iRelease profiles by default in the CCS 3.3 pjts provided.

Use –DMcasp_LOOPJOB_ENABLED when the loop job buffer support needs to be enabled.
If this support is not enabled, the Mcbsp driver works in non loop job enabled mode

9.3 Features
This section details the features of Mcasp and how to use them in detail.

9.3.1 Multi-Instance

The Mcasp driver can operate on all the instances of Mcasp on the EVM 6748.
Different instances may be specified during driver creation time, and instances 0
through 2 with corresponding device IDs 0 through 2 are supported, respectively.

These instances can operate simultaneously with configurations supported by the
Mcasp driver. Mcasp instances are created as follows:

Page 88 of 234

C6748 BIOS PSP User Guide

1. Static creation – static creation is done in the “tcf” file of the
application; this creation happens at build time. The UDEV module
(UDEV.create) is used during static configuration. An instance of the
UDEV module at static configuration time corresponds to creating and
initializing an MCASP instance

2. Dynamic creation – Dynamic creation of an Mcasp instance is done in
the application source files by calling DEV_createDevice(); this
creation happens at runtime.

UDEV.create and DEV_createDevice allow user to specify the following:

 iomFxns: Pointer to IOM function table. Mcasp requires this field to be
Mcasp_IOMFXNS.

 initFxn: MCASP requires that the user call Mcasp_init() as part of this initFxn.
Users can also directly hook in Mcasp_init().

 device parameters: Mcasp requires the user to pass an Mcasp_Params struct.
This struct must exist in the application source files and it must be initialized
very early as part of driver specific initFxn.

 deviceId to identify the Mcasp peripheral.

For more information on configuring UDEV and Mcasp, please refer to the Audio sample
application (included with this driver release), and the DSP/BIOS API Reference
(spru403o.pdf, included in your DSP/BIOS installation).

9.3.2 Each Instance as Transmitter and / or receiver

Mcasp driver can be simultaneously operated as a transmitter and or receiver. This
could be achieved by creating an SIO Channel as an INPUT channel and creating
another SIO Channel as an OUTPUT channel. The type of Channel is specified while
creating the channel (using SIO_create ()specify “IOM_OUTPUT” or
“IOM_INPUT”).

The key configuration would be to specify if the transmission section and reception
sections clocks are synchronous or not. This is specified by Mcasp_HwSetupData.
clk.clkSetupHiClk by clearing the BIT 6 or setting the bit for asynchronous mode.

9.3.3 Supported Data Formats

Mcasp driver expects the data (samples) to be arranged in a specific format when
requesting for an IO transfer. These formats are explained under scenario of using 1
serializer and 2 or more serializers. Some of the multi-channel DACs (such as
WM8746) expects the samples for all the channels to be received over single
serializers. To support these DACs, PSP provides support for couple of more data
formats. The required buffer format could be configured at driver creation time. The
sections below capture the details of supported data formats.

McASP Mode Single Serializer Multiple Serializer

Burst Mode /

DSP Mode

Interleaved Data Format Non-interleaved data format

TDM 1 Slot Interleaved Data Format Non-interleaved data format

Multi-Slots Interleaved Data Format Non-interleaved data format

Page 89 of 234

C6748 BIOS PSP User Guide

9.3.3.1 Interleave Data Format (Burst Mode / 1 Slot TDM mode / Multi-Slots TFM / DIT mode)

When configured as interleaved format, it is expected that McASP is configured to
use 1 serializer. The expected data format is as depicted below.

[<Slot1-Sample1>, <Slot1-Sample2>…<Slot1-SampleN>]

The size (number of bytes) that would be required to specify during an IO request is
computed using the formula size = <word width>*<number of samples N>. The
sample application that came with this package demonstrates the use of this data
format.File audioSample_io.c implements the functions which configure McASP to use
this buffer format.

The key configurations are

 Mcasp_ChanParams.noOfChannels = 0x00

 Mcasp_ChanParams.noOfSerRequested = 0x01

 Mcasp_ChanParams.indexOfSersRequested[0] = SERIALIZER_0

 The size of the IO request is computed as <No of Bytes per Sample> * <
No of Samples >. This value should be given as a size parameter of
SIO_submit ()

 Idle Time9.5 data pattern length computation. Minimum length should be
<word width in bytes> or an integral multiple of computed value. While
allocating buffer, allocate <computed value> * <no of slots enabled>.

9.3.3.2 Non-Interleaved Data Format (Burst Mode / 1 Slot TDM mode / Multi-Slots TDM / DIT mode)

When configured as non-interleaved format, it is expected that PSP driver is
configured to use multiple serializers. The expected data format is as depicted below.
When configured to use multiple serializers, the samples are expected to be
contiguous for a serializer, as depicted below. The assumption here is no of
serializers is 2 and no of samples is N

[<Seriliazer1-Sample1>, <Seriliazer1-Sample2>…<Seriliazer1-SampleN>,

 <Seriliazer2-Sample1>, <Seriliazer2-Sample2>, <Seriliazer2-SampleN>,

 <Seriliazer3-Sample1>, <Seriliazer3-Sample2>…<Seriliazer3-SampleN>]

The key configurations are

 Mcasp_ChanParams.noOfChannels = 0x00

 Mcasp_ChanParams.noOfSerRequested = 0x03

 Mcasp_ChanParams.indexOfSersRequested[0] = SERIALIZER_0

 Mcasp_ChanParams.indexOfSersRequested[1] = SERIALIZER_6

 Mcasp_ChanParams.indexOfSersRequested[2] = SERIALIZER_8

 The size of the IO request is computed as <No of Bytes per Sample> * <
No of Samples per Serializer>. This value should be given as a size
parameter of SIO_submit ()

 Idle Time9.5 data pattern length computation. Minimum length should be
<word width in bytes> or an integral multiple of computed value. While

TDM Non-interleaved data format Semi-interleaved data format

DIT Interleaved Data Format Non-interleaved data format

Page 90 of 234

C6748 BIOS PSP User Guide

allocating the buffer allocate computed value * no of serializers
enabled.

9.3.3.3 Non-Interleaved Data Format (Multiple Slots Single serializer)

When configured to use multiple slots, one serializer and non-interleaved format. The
samples are expected to be contiguous for a slot, as depicted below. The assumption
here is no of slots is 2 and no of samples is N

[<Slot1-Sample1>, <Slot1-Sample2>…<Slot1-SampleN>,

 <Slot2-Sample1>, <Slot2-Sample2>, <Slot2-SampleN>]

i.e. The samples of Slot1 are contiguous followed by contiguous samples of Slot 2

The key configurations are

 Mcasp_ChanParams.noOfChannels = 0x00

 Mcasp_ChanParams.noOfSerRequested = 0x01

 The size of the IO request is computed as <No of Bytes per Sample> * <
No of Samples per Slot>. This value should be given as a size parameter
of SIO_submit ()

 Idle Time9.5 data pattern length computation. Minimum length should be
<number of slots enabled> * <word width in bytes> or an integral
multiple of computed value. While allocating the buffer, allocate <compute
value> * <no of slots>

Consider as an example where the no of slots are 3 and no of samples per slot is N

[<Slot1-Sample1>, <Slot1-Sample2>…<Slot1-SampleN>,

 <Slot2-Sample1>, <Slot2-Sample2>, <Slot2-SampleN>,

 <Slot3-Sample1>, <Slot3-Sample2>…<Slot3-SampleN>]

9.3.3.4 Semi-Interleaved Data Format (Multiple Slots Multiple serializer)

When configured to use multi-slots with multi-serializer, the sample for all serializer
for a give slot is contiguous, further the samples for all slots are interleaved. The
following representation specifies the expected data format. The assumption in this
example is we have enabled 2 serializer and two slots in each serializer.

[<Slot1-Sample1-Serializer1>, <Slot1-Sample1-Serializer2>,

 <Slot2-Sample2-Serializer1>, <Slot2-Sample2-Serializer2>,…

 <Slot1-SampleN-Serializer1>, <Slot2-SampleN-Serializer2>]

The key configurations are

 Mcasp_ChanParams.noOfChannels = 0x00

 Mcasp_ChanParams.noOfSerRequested = 0x02

 The size of the IO request is computed as <No of Bytes per Sample> * <
No of Samples per Slot>. This value should be given as a size parameter
of SIO_submit ()

 Idle Time9.5 data pattern length computation. Minimum length should be
<number of slots enabled> * <word width in bytes> or an integral
multiple of computed value. While allocating memory for the loopJobBuffer
allocate the computed size * no of serializers enabled.

Page 91 of 234

C6748 BIOS PSP User Guide

9.3.4 Operational Modes (multi-slot TDM, I2S, DSP and DIT (S/PDIF)

9.3.4.1 Multi-Slot TDM

To configure McaspPSP to operate with multi-slot, use the
Mcasp_HwSetupData.tx/rx.frSyncCtl, this variable represents McASPs
AFRCTL/AFXCTL. Refer section 9.3.3 for details on the supported data format. The
sample application (audioSample_io.c) file demonstrates the required configurations.

9.3.4.2 I2S

To configure Mcasp to operate in I2S format, use the
Mcasp_HwSetupData.tx/rx.frSyncCtl and Mcasp_HwSetupData.tx/rx.xfmt. This
variable represents McASPs AFRCTL/AFXCTL and XFMT / RFMT registers. Please refer
to sample application (audioSample_io.c) for the required configurations.

9.3.4.3 DSP

To configure Mcasp to operate in DSP format, use the
Mcasp_HwSetupData.tx/rx.frSyncCtl the fields RMOD/XMOD should be 0 and FRWID
/ FXWID should be 0. This variable represents McASPs AFRCTL/AFXCTL. Refer
section 9.3.3 for details on the supported data format.

The initialization time configurable parameter noOfChannels could be used to specify
the no of channels that 32 bit is split into. E.g if 32 bit is to be interpreted as 2 16 bit
samples, the noOfChannels should be set to 2.

9.3.4.4 DIT (S/PDIF)

To change the User Bits and Channel Status Bits that would be embedded by the
S/PDIF SIO, applications are expected to give the following parameters

 Mcasp_PktAddrPayload.writeDitParams = TRUE;

 Mcasp_PktAddrPayload.chStat = Address of structure of type
Mcasp_ChStatusRam.

 Mcasp_PktAddrPayload.userData = Address of structure of type
Mcasp_UserDataRam.

Driver would update the User Bits and Channel Status bits immediately. Applications
using the driver are in complete control change/update of User Bits and Channel
Status bits.

9.4 Power management Considerations
The Mcasp driver supports the V/F scaling and sleep mode power management
features. The following points should be kept in mind when working with the power
management enabled.

 The McASP driver supports power management features only when the driver
is compiled for NON loop job mode.

 Enabling the power management in the loop job mode will result in an error
return status from the driver.

For other details on the power management support please refer to Power
Management

Page 92 of 234

C6748 BIOS PSP User Guide

9.5 IDLE Time Data Patterns
IDLE Time in the context of Mcasp could be better explained under the CREATE Time
and Run Time. The sections below explain the behavior of Clock, Frame Sync and
Data signals.

9.5.1 Create Time

On successful creations of SIO instances, the Mcasp driver starts generating the
clock, Frame Sync and data (if configured as source / if configured as sink Mcasp
expects these signals). The data that would be sent out at this point can be
configured using Mcasp_ChanParams.userLoopJobBuffer and Mcasp_ChanParams
.userLoopJobLength. Optionally this could be set NULL and 0x0 respectively, the
driver uses driver’s internal buffers and length of these NULL buffers is 4 bytes.

9.5.2 Run Time

If the applications could not meet the real time needs of transmission/reception of
data, Mcasp driver steps in to consume to received the data or transmit a know data
pattern.

Mcasp driver could be configured to send out a know pattern when ever the above
situation arises using Mcasp_ChanParams.userLoopJobBuffer and
McaspChanParams .userLoopJobLength. Optionally this could be set NULL and 0x0
respectively, the McaspPSP driver uses driver’s internal buffers and length of these
NULL buffers is 4 bytes.

9.5.3 IDLE Time buffer size

This IDLE Time data patterns could possibly have un-intended effects, if used in-
correctly. It is recommended that following method is used to calculate the size of
the IDLE time buffers.

Size of Idle Time buffers = <width of slot in bytes> * <no of serializer enabled> *
<no of slots enabled>

If the application does not supply the idle time buffers, the Mcasp driver would use
its internal buffer of length 4 bytes when operating in TDM mode and 8 bytes when
operating in DIT mode.

CAUTION: If the computed size does not match the logical end of slots, the
channels could be swapped. A quick way to check would be to monitor the frame
sync and data line/s on scope and send out unique pattern in each slot of the idle
time buffer.

9.6 Explicit control of IO PINS
Mcasp driver provide explicit control on the directions of the following Mcasp pins.

Signal
Pin

Description

AFSR Frame Sync signal for reception. Direction should be
explicitly set when channel opened for READ

AHCLKR High Clock signal for reception. Direction should be
explicitly set when channel opened for READ

ACLKR Bit Clock signal for reception. Direction should be
explicitly set when channel opened for READ

AFSX Frame Sync signal for reception. Direction should be
explicitly set when channel opened for WRITE

AHCLKX High Clock signal for reception. Direction should be
explicitly set when channel opened for WRITE

Page 93 of 234

C6748 BIOS PSP User Guide

ACLKX Bit Clock signal for reception. Direction should be
explicitly set when channel opened for WRITE

There could be scenarios where the applications would require the Mcasp to be
configured as MASTER (one generating the Frame Sync, Bit Clock and High Clock)
and yet not drive these pins. This feature allows achieving this.

Use Mcasp_HwSetup.glb.pdir to set the directions. This variable maps to PDIR
register of Mcasp

9.7 Clocking McASP
The Mcasp peripheral requires two clocks to operate. The peripheral clock used to
drive the peripherals functional, the second clock (also called as auxiliary clock /
internal clock source) used to generate the high clock and the bit clocks for the serial
data-bit streams.

Alternatively, Mcasp could be configured to use an external clock source to derive the
bit clock for the serial data-bit streams. This external clock would be received via the
High Clock Pin. This setup is referred to as External Clock in this document.

9.7.1 Internal Clock

The Auxiliary clock passes thorough a two stage divider to generate bit clock for the
serial data stream. Please refer the data manual for Mcasp , section 2.2.1 Transmit
Clock and 2.2.2 Receive Clock. The configurations that would be required are
explained in the context of the example below.

Assumption: Mcasp is configured as output channel and would require to output the
High Clock (used as the system clock for the DACs), Bit clock and the frame sync.
For these setup following are the key configurations

 Mcasp_HwSetup.glb.pdir = 0x1C000000; With this we are selecting AFSX,
AHCLKX, CLKX as out pins and AFSR, AHCLKR, CLKR as input pins.

 Mcasp_HwSetupData.clk.clkSetupHiClk = 0x000080XX; With this we are
configuring Mcasp high clock to be sourced from internal clock (auxiliary clock
divided by the divisor specified by bits 0-11 of this register, is interpreted as
High Clock)

 Mcasp_HwSetupData.clk.clkSetupClk = 0x0000002X; With this we are
configuring Mcasp to source bit clock from the output of High clock (High
Clock divided by the divisor specified by divisor specified by the bits 0-4 of
this value)

 If it’s desired that the High Clock, Frame Sync and Bit Clock signal should not
be outputted, change the pin functionality as an input pin.

9.7.2 External Clock

9.7.2.1 External Frame Sync & External Bit Clock

Mcasp could be programmed to source the Frame Sync (for both reception and
transmission) from an external source such as DAC/ADC. The condition being that
the Bit Clock is also sourced from the same entity, failing which the behavior is un-
predictable (i.e. we could see clock failure condition). To configure the Mcasp to
source Bit clock and Frame Sync from an external entity following are the important
configurations.

Assuming that Mcasp is configured to transmit data and High Clock is ignored.(i.e.
External entity is generating Frame Sync and Bit clocks only)

Page 94 of 234

C6748 BIOS PSP User Guide

 Mcasp_HwSetup.glb.pdir = 0x00000000; With this we are selecting AFSX,
AHCLKX, CLKX as input pins and AFSR, AHCLKR, CLKR could be ignored if
the receive section of McASP is un-used.

 Mcasp_HwSetupData.clk.clkSetupHiClk = 0x00000000; With this we are
configuring Mcasp Bit clock to be sourced from ACLKX Pin. (Typically, in this
scenario we would not want to divide bit clock, we could out of Sync and not
meet the needs of the external device)

 Mcasp_HwSetupData.clk.clkSetupClk = 0xXXXXXXXX; Since we are sourcing
the Bit clock from the external AHCLK Pin, this register will not have any
effect on the Bit Clock and Frame Sync.

9.7.2.2 External High Clock

Mcasp could be programmed to source the High Clock from an external entity.
Typically if the High Clock is sourced from an external entity, the Bit Clock and
Frame Sync would be generated the McASP. The Bit Clock and the Frame Sync in
turn could feed into a serials data consumption unit such as a DAC. The
configurations mentioned below are the important configurations that are to
configured to use the external High Clock

Assuming that Mcasp is configured to transmit data and High Clock is sourced from
an external entity.

 Mcasp_HwSetup.glb.pdir = 0x14000000; With this we are selecting
AHCLKX as input pins, AFSX / ACLKX as output pins and AFSR, AHCLKR,
CLKR could be ignored if the receive section of McASP is un-used.

 Mcasp_HwSetupData.clk.clkSetupHiClk = 0x000000XX; With this we are
configuring Mcasp high clock to be sourced from AHCLKX Pin (The output of
clock divided by the divisor specified by bits 0-11 of this register, is
interpreted as High Clock)

 Mcasp_HwSetupData.clk.clkSetupClk = 0x0000002X; With this we are
configuring PSP to source bit clock from the output of High clock (High Clock
divided by the divisor specified by divisor specified by the bits 0-4 of this
value)

9.8 Clock Configuration (EVM C6748)
Mcasp drivers sample application that came with this release is configured to use
external Clock. The configurations are as explained in section 9.7.1. The sample
application demonstrates the audio data capturing through the line in and transmits
the same data through the line out Pin.

9.9 Configurations
Following tables document some of the configurable parameter of Mcasp. Please
refer to Mcasp.h for complete configurations and explanations.

9.9.1 Mcasp_Params

This structure defines the device configurations, expected to supply while creating
the driver. This is provided when driver channels are created (e.g. SIO_create).

Members Description

hwiNumber Maps HWI event number to the ECM group. Please note
that no validation is done by the driver.

Page 95 of 234

C6748 BIOS PSP User Guide

enablecache
This option is used if the driver should take care of
validating/invalidating the cache for the buffers provided
by the user.

isDataBufferPayloadS
tructure

Specifies to use to use User Bits, Channel Status bit and
flag update DIT params of the IO request.

mcaspHwSetup Hardware configurations of McASP driver.

pscPwrmEnable Option to enable/disable the power management
features in the driver

9.9.2 Mcasp_HwSetup

Members Description

glb
Specifies the device configurations that are common for
both the reception and transmission section.

rx
Specifies the configurations that are specific to the
reception section.

tx
Specifies the configurations that are specific to the
transmission section.

emu Power down emulation mode control

9.9.3 Mcasp_HwSetupGbl

Members Description

pfunc
Kept for future use. Driver decides the functionality of
the McASP PINS.

pdir
Applications could decide the PIN directions of Frame
Sync, High Clock and Bit Clock for both reception and
transmission. The directions are determined the driver.

ctl Kept for future use. Recommended to be 0x0 for now.

ditctl Dit Mode support enable disable.

9.9.4 Mcasp_HwSetupData

This structure defines the channel specific configurations for reception section and
transmission section.

Members Description

mask
The driver applies the value supplied by this register to
RMASK/XMASK

fmt The driver applies the value supplied by this register to

Page 96 of 234

C6748 BIOS PSP User Guide

RFMT/XFMT

frSyncCtl
The driver applies the value supplied by this register to
AFSRCTL/AFSXCTL

tdm
The driver applies the value supplied by this register to
RTDM/XTDM

intCtl
The driver applies the value supplied by this register to
RINTCTL /XINTCTL

stat
The driver applies the value supplied by this register to
RSTAT/XSTAT

evtCtl
The driver applies the value supplied by this register to
REVTCTL/XEVTCTL

clk
Configure the BIT clock, the High clock configuration and
Clock failure detection

9.9.5 Mcasp_HwSetupData

Members Description

clkSetupClk
The driver applies the value supplied by this register to
ACLKRCTL/ACLKXCTL

clkSetupHiClk
The driver applies the value supplied by this register to
AHCLKRCTL/AHCLKXCTL

clkChk
The driver applies the value supplied by this register to
RCLKCHK/XCLKCHK

9.9.6 Mcasp_ChanParams

Applications could use this structure to configure the channel specific configurations.

Members Description

noOfSerRequested
The number of serializers required to use by the
channels.

indexOfSersRequested Index of the serializer that would be required.

mcaspSetup
The hardware configurations required for the channel
specifically. Please refer section Mcasp_HwSetupData.

channelMode To operate in DIT/TDM mode

wordWidth Required wordwidth in the slots.

isDmaDriven whether the channel is DMA driven.

userLoopJobBuffer Buffer to be transferred when the loop job is running.

userLoopJobLength
Number of bytes of the userloopjob buffer for each
serializer.

edmaHandle Handle to PSP EDMA LLD driver

Page 97 of 234

C6748 BIOS PSP User Guide

gblCbk
callback required when global error occurs and this must
be callable from the ISR context

noOfChannels
No of channels of data to be transmitted. Please refer
section 9.3.4.3 for details.

DataFormat Buffer format for the audio data to be used by the driver.

EnableHwFifo
Flag to indicate if the Hardware FIFO is to be enabled for
this channel.

isDataPacked

flag to indicate if the buffer data needs to be packed, i.e.
the EDMA needs to be programmed for the exact slot
width or a rounded width of 32,16, or 8 Bit is to be
used.

9.9.7 Mcasp_PktAddrPayload

Application are expected to pass pointer to this structure in SIO_submit () function
calls. It is recommends that these packets are allocated on the heap, since the driver
would return a pointer to this structure when the IO request is
completed/flushed/aborted.

Members Description

chStat
Applicable to DIT mode, should point to a channel status bits
associated with S/PDIF stream.

userData
Applicable to DIT mode, should point to a user bits associated
with S/PDIF stream.

writeDitParams
Flag to indicate if the user bits and channel status bits is to be
updated/re-configured with the supplied values.

Addr
Pointer to data that requires to be transmitted. Please refer
section 9.3.3 for details on the supported data formats.

9.10 IO Request Format
While creating the Mcasp device driver (either through TCF file statically or using the
API DEV_create) it’s required to configure as to how the data buffers would be
supplied by the application.

9.10.1 TDM Mode

Application could pass the address of the audio buffer to McASP via the SIO_write ()
API. On completion of transmission/reception the application supplied callback would
be called with address of the audio buffer as the parameter. The behavior described
above could be configured using the create time configuration
Mcasp_params.isDataBufferPayloadStructure = FALSE

If Mcasp_Params.isDataBufferPayloadStructure is set to TRUE the audio data is
expected to be encapsulated in structure Mcasp_PktAddrPayload. The member
writeDitParams should be set to FALSE.

9.10.2 DIT Mode

Applications could use the structure Mcasp_PktAddrPayload to pass a pointer to the
data buffer and specify User Bits / Channel Status Bits. In DIT mode, this could be

Page 98 of 234

C6748 BIOS PSP User Guide

specified with configuration Mcasp_Params.isDataBufferPayloadStructure =
TRUE, the driver would interpret the data buffer passed in function call SIO_submit
() as a pointer to structure Mcasp_PktAddrPayload and all its members are
populated.

9.11 CACHE Control
Mcasp could be configured to FLUSH/INVALIADTE the application supplied buffers
while creating the drivers with configuration parameter Mcasp_Params.enablecache
= TRUE/FALSE. When set to TRUE for every request the data buffer is
FLUSHED/INVALIDATED. One could improve the latency of SIO_submit () call by
providing pre-flushed/pre-invalidate data and disabling the cache option.

9.12 Control Commands
Following table describes some of important the control commands, for a
comprehensive list please refer the IOCTL defined in Mcasp.h.

Command Arguments Description

Mcasp_IOCTL_CNTRL_A
MUTE

Uint32 * Writes the supplied Uint32 value
into AMUTE register of McASP
peripheral.

Mcasp_IOCTL_STOP_PO
RT

None Stops the transmission/reception.
The current IO request in the QUE
is completed.

Mcasp_ICOTL_START_P
ORT

None Re-Starts the transmission /
reception. When there are no
pending IO requests, the clocks
are stopped and re-started.

Mcasp_IOCTL_CTRL_MO
DIFY_LOOPJOB

Mcasp_ChanP
arams *

Used to modify the existing know
data pattern. Parameters
userLoopJobBuffer and
userLoopJobLength are used.

Mcasp_IOCTL_CTRL_MU
TE_ON

None Applicable to Transmit channel
only. The current IO request is
completed and MUTE Data pattern is
sent out

Mcasp_
IOCTL_CTRL_MUTE_OFF

None Applicable to Transmit channel
only which is muted. Configures to
play the next pending IO request,
else configures to play the
LoopJobBuffers.

Mcasp_IOCTL_PAUSE None Pause the Mcasp channel operations

Mcasp_IOCTL_RESUME None Resume the Mcasp channel
operations

Mcasp_IOCTL_CHAN_RE
SET

None De-activates the
transmission/reception and returns
all the queued request with status
of the IO request set as
FLUSHED/ABORTED

Mcasp_IOCTL_CNTRL_S Mcasp_HwSet Re-Configures the channel with new
configurations specified. Takes no

Page 99 of 234

C6748 BIOS PSP User Guide

ET_FORMAT_CHAN upData * effect on the pending / current IO
request.

Mcasp_IOCTL_CNTRL_G
ET_FORMAT_CHAN

Mcasp_HwSet
upData *

Return the current channel
configurations

Mcasp_IOCTL_DEVICE_
RESET

None Icotl command to reset the Mcasp
device

Mcasp_
IOCTL_QUERY_MUTE

Uint32 * Ioctl command to query the current
settings of the AMUTE register.

Mcasp_
IOCTL_SET_DIT_MODE

Uint32 * Icotl command to set the DIT mode
of operation

Mcasp_IOCTL_CHAN_TI
MEDOUT

None Ioctl command to handle the
channel timeout condition.

Mcasp_IOCTL_ABORT None This IOCTL aborts all the pending
request of the channel and stops
the state machine. The EDMA
transfer is also stopped.

Mcasp_IOCTL_SET_DLB
_MODE

None This command is used to set the
McASP in to the loopback mode.

Mcasp_IOCTL_CNTRL_S
ET_GBL_REGS

Mcasp_HwSet
up *

Command to set the global control
registers

Mcasp_IOCTL_SET_SAM
PLE_RATE

Uint32 * Command to modify the sample rate.

Mcasp_IOCTL_GET_DEV
INFO

Mcasp_Audio
DevData *

Command to retrieve the device
specific information.

9.13 Use of PSP driver through SIO APIs
Following sections explain the use of parameters of SIO calls in the context of Mcasp
driver. Note that no effort is made to document the use of SIO calls; any Mcasp
specific requirements are covered below.

9.13.1 SIO_create

Parameter
Number Parameter Specifics to PSP

1 Device Name string

Unique identifier used to identify this driver.
Please note the name should be same as
specified while creating the driver. (Either
through TCF or DEV_createDevice)

2 IO Type
Should be “IOM_INPUT” when McASP requires
to received data and “IOM_OUTPUT” when
McASP requires to transmit

3 bufSize Stream buffer size

4 SIO_Attrs * Parameters required for the creation of the
SIO (e.g. channel parameters)

Page 100 of 234

C6748 BIOS PSP User Guide

9.13.2 SIO_ctrl

Parameter
Number

Parameter Specifics to PSP

1 SIO_Handle Handle returned by SIO_create

2 Command IOCTL command defined by Mcasp driver

3 Arguments Misc arguments if required by the command

9.13.3 SIO_issue

Parameter
Number

Parameter Specifics to PSP

1 channel Handle Handle returned by SIO_create

2 Pointer to buffer
Should be pointer to variable of type
Mcasp_PktAddrPayload OR Uint32 * that
holds the audio data.

3 arg User argument

4 Size Size of the transaction

9.13.4 SIO_reclaim

Parameter
Number Parameter Specifics to PSP

1 channel Handle Handle returned by SIO_create

2
Pointer to buffer Should be pointer to variable of type

Mcasp_PktAddrPayload OR Uint32 * that
holds the audio data.

3 Pointer to arg User argument

9.14 Timeline of Frame Sync, High Clock and or Bit Clock generation
The behavior of Mcasp driver is better explained under these two sections.

9.14.1 Mcasp sourcing Frame Sync, High clock and or Bit Clock

On successful creation of Mcasp device driver, the Frame Sync, Bit Clock and High
Clock are started. In EVM designs such as C6748, the High Clock is fed into On board
DAC/ADC (Such as AIC31). Applications are expected to create the driver first, (after
recommended delay) applications could program the DACs.

9.14.2 Mcasp sinking Frame Sync, High clock and or Bit Clock

When Mcasp is sinking the Frame Sync, Bit Clock and or High Clock, applications
should ensure that clocks are being fed into Mcasp before creating the device driver.
Failing which the Mcasp will not pull transmit/reception section out of re-set.
Effectively the driver creation would fail.

Page 101 of 234

C6748 BIOS PSP User Guide

9.15 Porting Guide
This section describes the major changes that would be required to port the Mcasp
driver from DS/BIOS™ operating system to a different operating system.

The McASP Device Driver is based upon the DSP BIOS IOM interface. The driver is
tightly coupled with the DSP BIOS operating system

9.16 Sources that need re-targeting

9.16.1 ti/pspiom/cslr/soc_C6748.h (soc specific header file):

This file contains target (SoC) specific definitions. In most cases, changing the values
for the SoC specific details done here should suffice. However, if there are major
changes in the hardware instance then the driver file may be needed to change.

9.17 EDMA3 Dependency
Mcasp driver relies on PSP EDMA3 driver to move data from/to application buffers to
peripheral; typically PSP EDMA3 driver is PSP deliverable unless mentioned
otherwise. Please refer to the release notes that came with this release. Please
ensure that current PSP release is compliant with version of EDMA3 driver being
used.

9.17.1 Used Paramset of EDMA 3
Mcasp driver uses TWO paramsets of EDMA3; if there are no paramsets are available the Mcasp
driver creation would fail. These paramsets are used through the life time of PSP driver.

9.18 How to support “NEW” data format
If a custom data format is to be supported, one would require to follow these steps.

 Add an enumeration in Mcasp_BufferFormat defined in Mcasp.h

 Update the function mcaspValidateBufferConfig() implemented in mcasp.c
to recognize this new data format.

 Update the function implemented mcaspGetIndicesSyncType() in
mcasp_edma.c to provide the EDMA 3 indices required to configure EDMA3

9.19 Known Issues
Please refer to the top level release notes that came with this release.

9.20 Limitations
Please refer to the top level release notes that came with this release.

9.21 McASP Sample application

9.21.1.1 Description:

This sample demonstrates the use of the McASP driver in EVM to EVM communication
mode. Mcasp driver supports only DMA mode of operation.

The Mcasp sample application has two projects

1. Master mode project

2. Slave mode project.

Page 102 of 234

C6748 BIOS PSP User Guide

Master mode sample application is used to configure one of the EVM as master i.e. it
supplies all the required clocks, while the slave mode sample application takes the
clocks from an external device.

The driver along with the required component modules are configured statically in
mcaspSample.tcf file. The required task for the test application and the memory for
the heap are also created here.

The mcaspSample.tcf file contains the remaining BIOS configuration like the
configuration of the event combiner etc. This helps to map the Mcasp events to the
CPU interrupts.

The “Mcasp_echo_task() task exercises the Mcasp driver. It uses Stream APIS to
create mcasp driver channels and also to perform the IO operations.

9.21.1.2 Build:

 This sample can be built using the CCS3 or the CCS4 interface.

IMPORTANT NOTE: The sample application project contains the references to
%EDMA3LLD_BIOS5_INSTALLDIR% environment variable and links with edma3
libraries. This is required because driver by default requires that the EDMA be
present.

Please refer to the “Integration Guide” section for more details about building the
project.

9.21.1.3 Setup:

You need to connect two EVMs with the McASP instance 0 on one EVM connected to
the McASP instance 0 on the other evm. The other settings are as described below.

1. The S7 jumper switch number “2” should be “ON” for both the EVMs.

2. The connections for the EVM to EVM are as follows. Refer to the
schematics for the PIN number references.

Master Slave

ACLKX0(58) ACLKX0(57)

AFSX0(54) AFSX0(53)

AXR[9](61) AXR[9](61)

GND(16) GND(16)

9.21.1.4 Output:

The sample on the slave side is loaded and executed first. Next the sample
application on the master side is loaded and executed. The following output will be
observed on both the master and slave sides once the application has completed
successfully.

Page 103 of 234

C6748 BIOS PSP User Guide

10 Audio driver

10.1 Introduction
This document is the reference guide for the Audio device driver which explains the
features and tips to use them.

DSP/BIOS applications use the driver typically through APIs provided by SIO layer,
to transmit and receive serial data. The following sections describe in detail,
procedures to use this driver, configure among others… It is recommended to go
through the sample application to get a feel of initializing and using the Audio driver

10.1.1 Key Features

 Multi-instance support and re-entrant driver(10.3.1)

 Each instance can be used to configure a complete receive and transmit
section of an audio configuration consisting of an audio device and multiple
audio codecs (0).

10.2 Installation
The Audio device driver is a part of PSP product for C6748 and would be installed as
part of product installation.

10.2.1 Audio Component folder

On installation of PSP package for C6748, the Audio driver can be found at <ID>\
ti\pspiom\platforms\evm6748\audio

As show above the audio folder contains sub-folder, contents of which are described
below.

 audio - The audio folder is the place holder for the entire Audio driver. This
folder contains Audio.h which is the header file included by the application.

 build – contains CCS 3.3 / CCS 4 project file to build Audio library.

 docs – Contains doxygen generated API reference.

 lib – Contains Audio libraries

 src – Contains Audio driver’s source code.

10.2.2 Build Options

The Audio library can be built using the CCS v3.3 project file located at
<ID>\packages\ti\pspiom\platforms\evm6748\audio\build\ccs3\audio.pjt. This
project file supports the following build configurations.

It can also be built using the CCS v4 project files located at

<ID>\packages\ti\pspiom\platforms\evm6748\audio\build\ccs4

Page 104 of 234

C6748 BIOS PSP User Guide

Debug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

iDebug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines “Audio_DEBUGPRINT_ENABLE to enable Audio driver to LOG debug
messages.

Release:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

iRelease:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines “Audio_DEBUGPRINT_ENABLE to enable Audio driver to LOG debug
messages.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

10.2.2.1 Required and Optional Pre-defined symbols

The Audio library can also be built with these optional pre-defined symbols.

Use -DPSP_DISABLE_INPUT_PARAMETER_CHECK when building library to turn
OFF parameter checking. This symbol is defined for Release and iRelease profiles
by default in the CCS 3.3 pjts provided.

Use -DNDEBUG when building library to turn off runtime asserts. This symbol is
defined for Release and iRelease profiles by default in the CCS 3.3 pjts provided.

10.3 Features
This section details the features provided by audio driver and how to use them in
detail.

10.3.1 Multi-Instance

The Audio driver can operate on all the instances of Mcasp and audio codecs on the
EVM 6748. Different instances may be specified during driver creation time, and
instances 0 through 2 with corresponding device IDs 0 through 2 are supported,
respectively.

These instances can operate simultaneously with configurations supported by the
Audio driver. Audio instances are created as follows:

1. Static creation – static creation is done in the “tcf” file of the
application; this creation happens at build time. The UDEV module
(UDEV.create) is used during static configuration. An instance of the

Page 105 of 234

C6748 BIOS PSP User Guide

UDEV module at static configuration time corresponds to creating and
initializing an Audio instance

2. Dynamic creation – Dynamic creation of an Audio instance is done in
the application source files by calling DEV_createDevice(); this
creation happens at runtime.

UDEV.create and DEV_createDevice allow user to specify the following:

 iomFxns: Pointer to IOM function table. Audio requires this field to be
Audio_IOMFXNS.

 initFxn: Audio Interface requires that the user call Audio_init() as part of this
initFxn. Users can also directly hook in Audio_init().

 device parameters: Audio driver requires the user to pass an Audio_Params
struct. This struct must exist in the application source files and it must be
initialized very early as part of driver specific initFxn.

 deviceId to identify the Audio peripheral.

For more information on configuring UDEV and Audio, please refer to the Audio
sample application (included with this driver release), and the DSP/BIOS API
Reference (spru403o.pdf, included in your DSP/BIOS installation).

10.3.2 Each Instance as Transmitter and / or receiver

Audio driver can be operated as a transmitter and or receiver. This could be achieved
by creating an SIO Channel as an INPUT channel and creating another SIO Channel
as an OUTPUT channel. The type of Channel is specified while creating the channel
(using SIO_create ()specify “IOM_OUTPUT” or “IOM_INPUT”). The configuration
parameters are explained in the sections to follow.

10.4 Configurations
Following tables document some of the configurable parameter of Audio. Please refer
to Audio.h for complete configurations and explanations.

10.4.1 Audio_Params

This structure defines the device configurations, expected to supply while creating
the driver instance. This is provided when driver channels are created (e.g.
SIO_create).

Members Description

instNum Instance number of the driver.

adDevType Audio device to be used in the configuration
(Mcasp/Mcbsp)

adDevName Name of the audio device driver in the driver table

acNumCodecs Number of codecs in the current audio configuration

acDevname Name of the audio codec device in the driver table

Apart from the instance parameters described above build options can also be added
or removed to add/remove features.e.g -DPSP_DISABLE_INPUT_PARAMETER_CHECK

Page 106 of 234

C6748 BIOS PSP User Guide

10.4.2 Audio_ChannelConfig

Applications could use this structure to configure the channel specific configurations
required by the individual channels.

Members Description

chanParam
Pointer to the channel structure needed by the audio device.
(This structure needs to be identified by the device in use in
the current configuration).

acChannelConfig
The structure holding the audio codec driver’s channel
parameters.

10.5 Control Commands
Following table describes some of important the control commands, for a
comprehensive list please refer the IOCTL defined in Audio.h.

Command Arguments Description

Audio_IOCTL_SAMPL
E_RATE

Uint32 * Changes the sample rate for the
audio configurations.

10.6 Use of Audio driver through SIO APIs
Following sections explain the use of parameters of SIO calls in the context of Audio
driver. Note that no effort is made to document the use of SIO calls; any AudioPSP
specific requirements are covered below.

10.6.1 SIO_create

Parameter
Number

Parameter Specifics to Audio

1 Device Name string

Unique identifier used to identify this driver.
Please note the name should be same as
specified while creating the driver. (Either
through TCF or DEV_createDevice ()

2 IO Type
Should be “IOM_INPUT” when Audio requires
to received data and “IOM_OUTPUT” when
Audio requires to create a transmit channel.

3 bufSize Stream buffer size

4 SIO_Attrs * Parameters required for the creation of the
SIO (e.g. channel parameters)

10.6.2 SIO_ctrl

Parameter
Number

Parameter Specifics to Audio

1 SIO_Handle Handle returned by SIO_create

2 Command IOCTL command defined by device driver to

Page 107 of 234

C6748 BIOS PSP User Guide

which the command is intented.

3 Audio_ IoctlParam *

Pointer to the structure containing the
information about the device to which the
command is intended and also the extra
information required in case of certain IOCTL
commands.

10.6.3 Stream_issue

Parameter
Number

Parameter Specifics to Audio

1 Channel Handle Handle returned bySIO_create

2 Pointer to buffer Should be pointer to variable of type that
holds the data to be transmitted.

3 arg User argument

4 Size Size of the transaction

10.6.4 SIO_reclaim

Parameter
Number

Parameter Specifics to Audio

1 channel Handle Handle returned by SIO_create

2 Pointer to buffer
Should be pointer to variable Uint32 * that
holds the audio data.

3 Pointer to arg User argument return

10.7 Sources that need re-targeting

10.7.1 ti/pspiom/cslr/soc_C6748.h (soc specific header file):

This file contains target (SoC) specific definitions. In most cases, changing the values
for the SoC specific details done here should suffice. However, if there are major
changes in the hardware instance then the driver file may be needed to change.

10.8 EDMA3 Dependency
The Audio driver does not depend on the EDMA3 LLD driver directly. But, the
underlying audio driver might be dependent on the EDMA driver.

10.9 Known Issues
Please refer to the top level release notes that came with this release.

10.10 Limitations
Please refer to the top level release notes that came with this release.

Page 108 of 234

C6748 BIOS PSP User Guide

10.11 Audio Sample Application

10.11.1 Description:

This sample demonstrates the use of the Audio driver. This application configures the
Audio driver to communicate with the Mcasp driver and the Aic31 driver. The Aic31
driver uses the I2c driver. The flow is as follows:

All drivers used in this application are configured in audioSample.tci. The
corresponding init functions and global variables are located in
audioSample_instParams.c

The audioSample.tcf file contains the remaining BIOS configuration. The most
important lines in this file which the application may need to pull into his tcf file are
as follows.

bios.ECM.ENABLE = 1;

bios.HWI.instance("HWI_INT7").interruptSelectNumber = 0;

bios.HWI.instance("HWI_INT8").interruptSelectNumber = 1;

bios.HWI.instance("HWI_INT9").interruptSelectNumber = 2;

bios.HWI.instance("HWI_INT10").interruptSelectNumber = 3;

These lines configure the ECM module and map ECM events to CPU interrupts.

The main() function configures the PINMUX and uses the Psc module to enable the
peripherals.

The Audio_echo_Task () task is the work task that transfers buffers from SIO input
channel to SIO output channel.

10.11.1.1 Build:

 This sample can be built using

<ID>/packages/ti/pspiom/examples/evm6748/audio/build/ccs3/audioSample.pjt

IMPORTANT NOTE: audioSample.pjt contains references to
%EDMA3LLD_BIOS5_INSTALLDIR% environment variable and links with edma3
libraries.

10.11.1.2 Setup:

You need to connect an audio cable from the Host PC audio output to Line IN of EVM
6748. Then connect another audio cable from Line OUT of EVM 6748 to a speaker.
Play music on the host PC while running the application. Please ensure that the
“Multi Channel Audio Board” is NOT plugged into the audio expansion slot of the
EVM.

Note: The Multi-channel Audio Board should not be plugged into the EVM while
running this sample application.

10.11.1.3 Output:

When the sample runs, you can hear the music from the speakers.

10.12 Dependencies
The audio sample application is dependent on the following drivers

 Audio interface.

 Mcasp driver.

Page 109 of 234

C6748 BIOS PSP User Guide

 Aic31 codec driver.

 I2C driver.

10.12.1 Audio Interface

The audio interface provides a high level interface for the user to configure a audio
configuration consisting of one audio device and multiple audio codecs. An instance
of the Audio interface is used for any data exchange between the application and the
underlying audio device/driver .For further details on the usage of the audio interface
please refer to the Audio interface user guide and design documents.

10.12.2 McASP Driver

The McASP driver is used to transport audio data to and from the McASP peripheral.
The application submits the data read and write requests to the audio interface
driver, which in turn are submitted to the Mcasp driver. The McASP driver then
reads/writes data to/from the McASP peripheral. For further details on the usage of
the Mcasp device and interfaces, please refer to the Mcasp user guide and design
documents.

10.12.3 Aic31 Codec Driver

The Aic31 Codec control is interfaced to the SoC through the I2C. The codec can be
configured by the application through an I2C interface only. The Aic31 codec
converts the digital audio data from the McASP to the analog audio signal and vice
versa. Please note that the codec driver does not handle any data transfer request
from the application. It only handles the configuration of the audio codec as
requested by the audio interface (or application). The application payload (audio)
data is transferred to/from the codec is via McASP peripheral pins connected to the
codec and this transfer occurs without any explicit request from the application. For
further details on the usage of the Aic31 codec please refer to the Aic31 codec driver
user guide and design documents.

10.12.4 I2C Driver

The codec cannot be configured directly by the McASP driver. The Aic31 codec
control is interfaced to the SoC through an I2C interface. Hence the I2C driver is
required for configuring the codec driver. The codec driver internally uses the I2C
driver APIs to read and write to the codec registers. The application is expected to
initialize the I2 driver prior to using the codec driver. For further details on the usage
of the I2C please refer to the I2C user guide and design documents.

Page 110 of 234

C6748 BIOS PSP User Guide

The block diagram below depicts the dependencies between the different drivers in
the sample application. The audio application interacts with the audio interface driver
through stream interface APIs. The audio interface driver internally interacts with the
McASP driver and Aic31 driver. The Aic31 driver internally uses the I2C driver to
configure the codec registers. The application needs to configure the drivers in the
required modes before creating the channels for the audio application.

Hardware

Aic31

AUDIO APPLICATION

Mcasp

Audio interface driver

Stream Interface

I2C

DSP-BIOS

Page 111 of 234

C6748 BIOS PSP User Guide

11 AIC31 CODEC driver

11.1 Introduction
This document is the reference guide for the Aic31 device driver which explains the
features and tips to use them.

DSP/BIOS applications use the driver typically through APIs provided by SIO layer,
to configure the transmit and receive sections. The following sections describe in
detail, procedures to use this driver and configure it. It is recommended to go
through the sample application to get familiar with initializing and using the Aic31
driver

11.1.1 Key Features

 Multi-instance support and re-entrant driver.

 Each instance can operate as a receiver and or transmitter.

 Interfaces to control the codec specific features like sample rate etc.

11.2 Installation
The Aic31 device driver is a part of PSP product for C6748 and would be installed as
part of product installation.

11.2.1 Codec Component folder

On installation of PSP package for C6748, the codec driver can be found at <ID>\
ti\pspiom\platforms\codec

As show above the Codec folder contains sub-folder, contents of which are described
below.

 codec - The codec folder is the place holder for the all codec driver. This
folder contains ICodec.h and Aic31.h which is the header file included by the
application.

 build – contains CCS 3.3 / CCS 4 project file to build Aic31 library.

 docs – Contains doxygen generated API reference.

 lib – Contains Aic31 libraries

 src – Contains Aic31 driver’s source code.

11.2.2 Build Options

The Aic31 library can be built using the CCS v3.3 project file located at
<ID>\packages\ti\pspiom\platforms\evm6748\codec\build\ccs3\aic31.pjt. This
project file supports the following build configurations.

IMPORTANT NOTE:

Page 112 of 234

C6748 BIOS PSP User Guide

All build configurations require environment variable
%EDMA3LLD_BIOS5_INSTALLDIR% to be defined. This variable must point to
“<EDMA3_INSTALL_DIR>\packages”.

Debug:

 “-g –mo –mv6740” compile options used to build library.

iDebug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “Aic31_DEBUGPRINT_ENABLE to enable Aic31 driver to LOG debug
messages.

Release:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

iRelease:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines “Aic31_DEBUGPRINT_ENABLE to enable Aic31 driver to LOG debug
messages.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

11.2.2.1 Required and Optional Pre-defined symbols

The Aic31 library must be built with a soc specific pre-defined symbol.

“-DCHIP_C6748” is used above to build for the EVM 6748. Internally this define is
used to select a soc specific header file (soc_C6748.h). This header file contains
information such as base addresses of Aic31 devices, their event numbers, etc.

The Aic31 library can also be built with these optional pre-defined symbols.

Use -DPSP_DISABLE_INPUT_PARAMETER_CHECK when building library to turn
OFF parameter checking. This symbol is defined for Release and iRelease profiles
by default in the CCS 3.3 pjts provided.

Use -DNDEBUG when building library to turn off runtime asserts. This symbol is
defined for Release and iRelease profiles by default in the CCS 3.3 pjts provided.

11.3 Features
This section details the features of Aic31 codec driver and how to use them in detail.

11.3.1 Multi-Instance

The Aic31 codec driver can operate on all the instances of Aic31 on the EVM 6748
board. Different instances are specified during driver creation time. Supported
instance currently are 0 with instance id 0.

These instances can be operated simultaneously with configurations supported by
AIc31 driver.

Page 113 of 234

C6748 BIOS PSP User Guide

These instances can operate simultaneously with configurations supported by the
Aic31 driver. Aic31 instances are created as follows:

1. Static creation – static creation is done in the “tcf” file of the application; this
creation happens at build time. The UDEV module (UDEV.create) is used
during static configuration. An instance of the UDEV module at static
configuration time corresponds to creating and initializing an Aic31 instance

2. Dynamic creation – Dynamic creation of an Aic31 instance is done in the
application source files by calling DEV_createDevice(); this creation happens
at runtime.

UDEV.create and DEV_createDevice allow user to specify the following:

 iomFxns: Pointer to IOM function table. Aic31 driver requires this field to be
Aic31_IOMFXNS.

 initFxn: Codec driver requires that the user call Aic31_init() as part of this
initFxn. Users can also directly hook in Aic31_init().

 device parameters: Aic31 requires the user to pass an Aic31_Params struct.
This struct must exist in the application source files and it must be initialized
very early as part of driver specific initFxn.

 deviceId to identify the Aic31 peripheral.

For more information on configuring UDEV and Aic31, please refer to the Aic31
sample application (included with this driver release), and the DSP/BIOS API
Reference (spru403o.pdf, included in your DSP/BIOS installation).

11.3.2 Each Instance as Transmitter and receiver

Aic31 driver can be used to configure the transmitter and receiver section of the
Aic31 codec independently. Each of the sections can be configured independently by
creating an SIO Channel as an INPUT channel and creating another SIO Channel as
an OUTPUT channel. The type of Channel is specified while creating the channel
(using SIO_create()specify “IOM_OUTPUT” or “IOM_INPUT”). The configuration
parameters are explained in the sections to follow.

11.3.3 Interfaces to control the codec

The Aic31 driver provides the interface to control the specific features of the codec
through a well defined set of IOCTL commands. The IOCTL commands supported are
listed in the section 11.5

11.4 Configurations
Following tables document some of the configurable parameter of AIC31. Please
refer to Aic31.h for complete configurations and explanations.

11.4.1 Aic31_Params

This structure defines the device configurations, expected to supply while creating
the driver. This is provided when driver channels are created (e.g. SIO_create).

Members Description

acType Type of the codec

acControlBusType Control bus to be used by the AIC for configuring of
the codec(I2C/SPI)

acCtrlBusName Name of the control bus in the driver table.

Page 114 of 234

C6748 BIOS PSP User Guide

acOpMode Operational mode of the codec(Master/slave)

acSerialDataType Data transfer format(DSP/TDM/I2S etc)

acSlotWidth Slot width of the data

acDataPath Mode to configure the codec.

isRxTxClockIndependent is the clocks for the RX and TX sections independent

Apart from the instance parameters described above build options can also be added or removed to
add/remove features. e.g –DPSP_DISABLE_INPUT_PARAMETER_CHECK

11.4.2 Aic31_ChannelConfig

Applications could use this structure to configure the channel specific configurations.

Members Description

samplingRate Audio data sampling rate to be used

chanGain Initial gain to be programmed for the channel (in percent)

bitClockFreq Bit clock frequency to be used

numSlots Number of slots for the audio data

11.4.3 Codec Configuring

The codec usually is configured using an I2C bus or a SPI bus. Hence the codec
internally uses an I2c or SPI driver to configure the codec. The codec uses only the
interrupt mode of the driver to configure the codecs. It also uses a call back function
to synchronize each access done to/with the control bus.

11.5 Control Commands
Following table describes some of important the control commands, for a
comprehensive list please refer the ICOTL defined in Aic31.h

Command Arguments Description

Aic31_AC_IOCTL_MUTE_ON None Configures the mute for the
codec

Aic31_AC_IOCTL_MUTE_OFF None Disables the

Aic31_AC_IOCTL_SET_VOLU
ME

UInt32 * Set the required volume for the
codec

Aic31_AC_IOCTL_SET_LOOP
BACK

None Not supported

Aic31_AC_IOCTL_SET_SAMP
LERATE

UInt32 * Gets the current sample rate
for the audio codec

Aic31_AC__IOCTL_REG_WRI
TE

Aic31_RegData
*

Writes to the specified
register

Aic31_AC_IOCTL_REG_READ Aic31_RegData
*

Reads from the specified
register

Aic31_AC_IOCTL_REG_WRIT
E_MULTIPLE

Aic31_RegData
*

Writes to the specified number
of registers

Page 115 of 234

C6748 BIOS PSP User Guide

Aic31_AC_IOCTL_REG_READ
_MULTIPLE

Aic31_RegData
*

Reads from the specified number
of registers

Aic31_AC_IOCTL_SELECT_O
UTPUT_SOURCE

ICodec_Output
Dest *

Selects the output destination
of the audio codec

Aic31_AC_IOCTL_SELECT_I
NPUT_SOURCE

ICodec_InputD
est *

Selects the input source of the

Audio codec

Aic31_AC_IOCTL_GET_CODE
C_INFO

ICodec_CodecD
ata *

Gets the codec specific
information

11.6 Use of AIC31 driver through SIO APIs
Following sections explain the use of parameters of SIO calls in the context of AIC31
driver. Note that no effort is made to document the use of Stream calls; any AIC31
specific requirements are covered below.

11.6.1 SIO_create

Parameter
Number

Parameter Specifics to Aic31

1 Device Name string Unique identifier used to identify this driver.
Please note the name should be same as
specified while creating the driver. (Either
through TCF or DEV_createDevice ()

2 IO Type Should be “IOM_INPUT” when Audio requires
to received data and “IOM_OUTPUT” when
Audio requires to create a transmit channel.

3 bufSize Stream buffer size

4 SIO_Attrs * Parameters required for the creation of the
SIO (e.g. channel parameters)

11.6.2 SIO_ctrl

Parameter
Number

Parameter Specifics to Aic31

1 SIO_Handle Handle returned by SIO_create

2 Command IOCTL command defined by device driver to
which the command is intented.

3 Audio_IoctlParam * Pointer to the structure containing the
information about the device to which the
command is intended and also the extra
information required in case of certain IOCTL
commands.

Page 116 of 234

C6748 BIOS PSP User Guide

11.6.3 Stream_issue

Parameter
Number

Parameter Specifics to Aic31

1 Channel Handle Handle returned by SIO_create

2 Pointer to buffer Should be pointer to variable of type that
holds the data to be transmitted.

3 arg User argument

4 Size Size of the transaction

11.6.4 SIO_reclaim

Parameter
Number

Parameter Specifics to Aic31

1 channel Handle Handle returned by SIO_create

2 Pointer to buffer Should be pointer to variable Uint32 * that
holds the audio data.

3 Pointer to arg User argument return

11.7 Sources that need re-targeting

11.7.1 ti/pspiom/cslr/soc_C6748.h (soc specific header file):

This file contains target (SoC) specific definitions. In most cases, changing the values
for the SoC specific details done here should suffice. However, if there are major
changes in the hardware instance then the driver file may be needed to change.

11.8 EDMA3 Dependency
Aic31 driver does not use the EDMA mode of transfer. It does not handle any kind of
data transfer requests.

11.9 Known Issues
Please refer to the top level release notes that came with this release.

11.10 Limitations
Please refer to the top level release notes that came with this release.

Page 117 of 234

C6748 BIOS PSP User Guide

12 BLOCK MEDIA driver

12.1 Introduction
This section is the reference guide for the Block media device driver which explains
the features and tips to use them.

DSP/BIOS applications use the block media driver through the PSP APIs provided by
Block media package. The following sections describe in detail, procedures to use
this driver and configure it. It is recommended to go through the sample application
of storage drivers to get familiar with initializing and using the Block media driver.

The Block Media Driver is written for working with ERTFS. Hence only a ERTFS
adaptation is provided. The terms File System and ERTFS are used interchangeably
throughout this document.

The interface to the ERTFS file system is guarded by the PSP_FILE_SYSTEM
macro which is set to ‘0’ (zero) in blkmediaRaw.pjt. This is enabled to ‘1’
(one) in blkmediaFileSystem.pjt. The library generated by this should be
used when using block media driver with ERTFS file system.

12.1.1 Key Features

 Provides both Sync access for File system as well as for Raw/Sector level
access (for eg. USB MSC Class).

 Provides interfaces for Mass Storage Class clients like USB, NAND to talk to
Storage Block devices in a uniform way.

 Provides support for big block sector sizes.

 Supports cache alignment on unaligned buffers from application.

 Provides Write Protect support, Removable media support.

12.2 Installation
The Block media device driver is a part of PSP product for C6748 and would be
installed as part of product installation.

12.2.1 Block Media Component folder

On installation of PSP package for the C6748, the Block media driver can be found at
<ID>\ ti\pspiom\blkmedia\

As shown above, the block media folder contains several sub-folders, the contents of
which are described below:

 blkmedia - The blkmedia folder is the place holder for the entire BLOCK
MEDIA driver. This folder contains psp_blkdev.h which is the header file
included by the application.

 build – contains CCS 3.3 / CCS 4 project file to build Block media library.
This folder contains two projects inside ccs3 folder:

o blkmediaRaw.pjt – This pjt is used when block media is working in Raw mode.

o blkmediaFileSystem.pjt – This pjt is used when block media when File system is used

Page 118 of 234

C6748 BIOS PSP User Guide

The respective ccs 4 projects are inside the ccs4\filesystem and ccs4\raw
folder

 docs – Contains doxygen generated API reference.

 lib – Contains Block media libraries

 src – Contains Block media driver’s source code.

12.2.2 Build Options

The Block media library can be built using the CCS v3.3 project file located at
<ID>\packages\ti\pspiom\blkmedia\build\C6748\ccs3\. The project files support the
following build configurations.

IMPORTANT NOTE:

All build configurations require environment variable
%EDMA3LLD_BIOS5_INSTALLDIR% to be defined. This variable must point to
“<EDMA3_INSTALL_DIR>\packages”.

Debug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

Release:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver.

iDebug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines “BLKMEDIA_INSTRUMENTATION_ENABLED” to enable Block media
driver to LOG debug messages.

iRelease:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines “BLKMEDIA_INSTRUMENTATION_ENABLED” to enable Block media
driver to LOG debug messages.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver.

IMPORTANT NOTE:

Instrumentation code inside macros for idebug and irelease are not
implemented and are just a place holder for future implementation.

12.2.2.1 Required and Optional Pre-defined symbols

The Block media library must be built with a soc specific pre-defined symbol.

Page 119 of 234

C6748 BIOS PSP User Guide

“-DCHIP_C6748” is used above to build for C6748. Internally this define is used
to select a soc specific header file (soc_C6748.h). This header file contains
information such as base addresses of block media devices, their event numbers,
etc.

The Block media library can also be built with these optional pre-defined symbols.

Use -DPSP_DISABLE_INPUT_PARAMETER_CHECK when building library to turn
OFF parameter checking. This symbol is defined for Release profiles by default in
the CCS 3.3 pjts provided.

Use -DNDEBUG when building library to turn off runtime asserts. This symbol is
defined for Release profiles by default in the CCS 3.3 pjts provided.

12.3 Configurations
Following tables document some of the configurable parameter of BLOCK MEDIA.
Please refer to psp_blkdev.h for complete configurations and explanations.

12.3.1 Configuration defines

The following configuration defines are provided:

Members Default Values Description

PSP_BUFF_ALIGNMENT Enabled This macro enables the buffer alignment
mechanism in BLOCK MEDIA. If
application passes unaligned buffer for
read/write from storage media, then
block media aligns this buffer to cache
line length and passes it to storage
driver. Please note that if the underlying
storage driver uses EDMA mode of
operation then the buffer passed to the
storage driver should be cache aligned.

PSP_BUFFER_IO_SIZE 0x100000 bytes Buffer size for IO access. This buffer is
used when File System is used.

PSP_BUFFER_ASYNC_SIZE 0x7D000 bytes Buffer size for RAW access. This buffer is
used when RAW mode of media driver is
used.

PSP_BLK_EDMA_MEMCPY_IO Enabled For buffer alignment, to enable EDMA
copy for IO mode this macro must be
defined. If this is undefined then
BLKMEDIA will use the memcpy. This is
used when alignment is required during
access from file system.

PSP_BLK_EDMA_MEMCPY_ASYNC Disabled For buffer alignment, to enable EDMA
copy for RAW mode this macro must be
defined. If this is undefined then
BLKMEDIA will use the memcpy.
Currently the driver uses memcpy for
RAW mode. This is used when alignment
is required during access from RAW
application.

Page 120 of 234

C6748 BIOS PSP User Guide

PSP_BLK_DEV_MAXDEV PSP_BLK_DRV_MAX
= 2

Number of Instances of storage drives
supported. Currently set to
PSP_BLK_DRV_MAX (MMC,NAND and
SATA, USB) which is an enum having
details of how many storage drivers are
there.

12.3.2 Run time configuration

Applications could use following parameters to configure block media driver at run
time. These individual parameters are provided when the block media driver is
initialized via PSP_blkmediaDrvInit(…).

Parameters Description
hEdma The handle to the EDMA driver.
edmaEventQ EDMA Event Queue number to be used for Block Media.
taskPrio Block media task priority. The priority should be greater than

any other storage task priority. The value should be in
supported rage of OS.

taskSize Stack size for Block Media task. Minimum 4Kbytes.

Please note that the EDMA LLD driver supports multiple instances of the EDMA
hardware (2 in case of C6748). The handles to these instances will be valid after
calling the edma3init() API. The application should then appropriately pass the EDMA
handle via hEdma field above (hEdma[0] or hEdma[1]). The block media driver uses
free EDMA channels (channels that are not mapped to any device as per the EDMA
LLD configuration). These free channels are configured for every instance of the
EDMA LDD driver. The application should decide on the EDMA driver instance it will
use and pass the EDMA handle appropriately via hEdma. If the application decides to
use free channels from EDMA handle 0 then it should pass hEdma[0] and hEdma[1]
otherwise.

12.3.3 Block Device IOCTL structure

Applications could use this structure for populating different ioctls (e.g.
PSP_blkmediaDevIoctl)

Members Description
Cmd IOCTL command defined by Block media or storage driver.
pData Pointer to misc arguments if required by the command. Data

type information is defined in the IOCTL.
pData1 Second data arg., if required

12.3.4 Block Driver IOCTL structure

Applications could use this structure for raw operation of block media (e.g.
PSP_blkmediaDrvIoctl)

Members Description
Cmd IOCTL command defined by Block media for RAW usage (e.g.

PSP_BlkDrvIoctl_t).
pData Pointer to misc arguments if required by the command. Data

type information is defined in the IOCTL.

Page 121 of 234

C6748 BIOS PSP User Guide

pData1 Second data arg., if required

12.4 Block media driver API’s
Following sections explain the use of parameters for functions of Block media driver.
The Block Media driver provides isolation so that either File System or RAW
application owns a particular block device. The API’s are broadly divided in to four
sections:

12.4.1 Init/De-init API’s

12.4.1.1 PSP_blkmediaDrvInit - This function initializes the block media driver, take the
resources, initialize the data structure and create a block media task for storage
driver registration. This function also takes EDMA channel for alignment if the option
is selected. Block media needs to be initialized before any initialization to storage
driver (if block media is used to access the storage driver). This function also
initializes the file system (if supported).

Parameter
Number

Parameter Specifics to Block Media

1 hEdma EDMA driver handle.

2 edmaEventQ EDMA Event Queue number to be used for
Block Media

3 taskPrio Block media task priority. The priority should
be greater than any other storage task
priority. The value should be in supported
rage of OS.

4 taskSize Stack size for Block Media task. Minimum
4Kbytes.

12.4.1.2 PSP_blkmediaDrvDeInit - This function de-initialize the Block Media Driver. This
function de-allocates any resources taken during init and deletes the task created
during init. The function also frees the EDMA channel allocated during init. This
function also de-init the file system (if supported).

Parameter
Number

Parameter Specifics to Block Media

1 Void None

Note: These API are required irrespective of sample application usage (MMCSD or
NAND). These API’s are required to initialize and de-initialize the block media. These
API’s should be called only once during the system.

12.4.2 API’s for storage media

12.4.2.1 PSP_blkmediaDrvRegister - This function registers the storage driver with Block
Media Driver. Storage driver will call this function during initialization of the device
with a function pointer which can be called as soon as device is detected to get the
read write and ioctl pointers of the device. The same parameter is set to NULL
during de-init of a storage device.

Parameter Parameter Specifics to Block Media

Page 122 of 234

C6748 BIOS PSP User Guide

Number

1 driverId Id of the Storage Driver

2 pRegInfo Structure containing the device
register/un-register function. The
function passed here will be used
later to get the read write and
ioctl pointers of the storage
device.

12.4.2.2 PSP_blkmediaCallback - Block Driver Callback interface. This function is used for
propagating events from the underlying storage drivers to the block driver,
independent of the device context (Ex. Device insertion/removal, media write
protected).

Parameter
Number

Parameter Specifics to Block Media

1 driverId Id of the Storage Driver

2 pRegInfo Storage Driver Device Event
information.

Note: These API are used by storage media driver and not by applications.

12.4.3 API’s for File System

12.4.3.1 PSP_blkmediaDevIoctl - Handle the BLK IOCTL commands when device is active.
This IOCTL can be used to set device operation mode, get device sector size, get size
of storage device etc. See supported IOCTL commands in PSP_BlkDevIoctl_t and are
explained below.

Parameter
Number

Parameter Specifics to Block Media

1 driverId Id of the Storage Driver

2 pIoctl IOCTL info structure

Note: This API is used by Application using File System.

12.4.3.2 Control Commands - Following table describes some of important the control
commands in PSP_BlkDevIoctl_t, for a comprehensive list please refer the IOCTL
defined in psp_blkdev.h

Command Arguments Description

PSP_BLK_GETSECTMAX Uint32* Get the Max Sector information
from the underlying storage
driver.

PSP_BLK_GETBLKSIZE Uint32* Get the Block Size of one
Sector on the storage media.

PSP_BLK_SETPWRMODE None Set the Power mode for the
device. Currently this IOCTL is
not supported in any driver.

PSP_BLK_SETOPMODE PSP_BlkOpMode Set the Operating Mode for the

Page 123 of 234

C6748 BIOS PSP User Guide

* storage device. (Depends on the
underlying storage driver
support for this IOCTL command)

PSP_BLK_GETOPMODE PSP_BlkOpMode
*

Get the Operating Mode of the
storage device

PSP_BLK_DEVRESET None Reset the block device.
Currently this IOCTL is not
supported in any driver.

PSP_BLK_GETWPSTAT Bool* Get the storage media write
protect status.

PSP_BLK_GETREMSTAT Bool* Is the storage device removable
or not.

PSP_BLK_SETEVENTQ PSP_Mmcsd_Edm
a_EventQueue*

Set Event queue of EDMA channel
for storage media.

PSP_BLK_IOCTL_MAX None This IOCTL is added to the any
specific media ioctl to use the
media specific ioctls.

12.4.4 API’s for Non File system application

12.4.4.1 PSP_blkmediaAppRegister - The Media Driver clients like Mass Storage drivers shall
use this function to register a storage driver as RAW application for a Block media
device.

Parameter
Number

Parameter Specifics to Block Media

1 AppCb Address of the callback function of
application which will be called
after every read and write.

2 pIntOps Block Interface driver structure
with member DevOps having read
write and ioctl function pointers.
PSP_BlkDevOps_t structure will
contain address of a read write
and ioctl function after returning
from this function. This will be use
by application for read, write and
ioctl functions of storage device.

3 pHandle Block Driver Device Handle for the
storage device. This will be the
first arg of read, write and ioctl
functions called by the application.

12.4.4.2 PSP_blkmediaAppUnRegister - Media Driver clients like Mass Storage drivers shall
use this function to un-register from a Block device.

Parameter
Number

Parameter Specifics to Block Media

1 handle Block Media Device handle.

Page 124 of 234

C6748 BIOS PSP User Guide

12.4.4.3 PSP_blkmediaDrvIoctl - Handle the BLK IOCTL commands when device is active.
This IOCTL can be used to set a storage device for RAW access, get which device is
currently set for RAW access, set init completion callback for the storage device etc.
See supported IOCTL commands in PSP_BlkDrvIoctl_t.

Parameter
Number

Parameter Specifics to Block Media

1 pDevName Address of variable which contains
Device Name

2 pIoctl IOCTL info structure.

12.4.4.4 Control Commands - Following table describes some of important the control
commands, for a comprehensive list please refer the IOCTL defined in psp_blkdev.h

Command Arguments Description

PSP_BLK_DRV_SETRAWDEV PSP_BlkDrvId_
t *

Set a device for RAW access.

PSP_BLK_DRV_GETRAWDEV PSP_BlkDrvId_
t *

Get which device is currently
set for raw access.

PSP_BLK_DRV_SET_INIT_CO
MP_CALLBACK

Uint32 * Sets the init completion call
back function for storage
device. This needs to be used
only by storage drivers and not
applications.

Note: These API are required when application wants to use the storage driver for
RAW access.

12.5 Use of Block media driver for RAW application interface
The section discusses in detail about RAW application interface. The Block Media
Driver provides the interfaces to access the registered block device in RAW mode.
The section discusses in detail about how to interface a with block media for RAW
application interface. The block media driver must be initialized before using any API
of Block media.

12.5.1 Set Driver as RAW access

To set any storage device for RAW mode, application must call
PSP_blkmediaDrvIoctl() function with PSP_BLK_DRV_SETRAWDEV as a command.
Application has to pass the address of variable of type PSP_BlkDrvId_t, which
contains the Driver id of the device as first parameter and PSP_BlkDrvIoctlInfo_t
structure variable as second parameter. Driver id is enumerated in psp_blkdev.h.

Before registering device for RAW access, application must inform block media driver
about which device, application wants to set as a RAW device using
PSP_blkmediaDrvIoctl() function as explained below, otherwise
PSP_blkmediaAppRegister() function will fail.

For example to configure MMC as a RAW device, application needs to call following
function:

PSP_BlkDrvIoctlInfo_t drvIoctlInfo;

PSP_BlkDrvId_t driverDev = PSP_BLK_DRV_MMC0;

drvIoctlInfo.Cmd = PSP_BLK_DRV_SETRAWDEV;

drvIoctlInfo.pData = (Void*)&driverDev;

Page 125 of 234

C6748 BIOS PSP User Guide

PSP_blkmediaDrvIoctl((Void*)&device, &drvIoctlInfo);

Note: Once the application set a RAW device to MMC/SD, the block media continues
to use MMCS/SD as a RAW device, until the application changes the RAW device
using the IOCTL call to set RAW device to NAND. Once application set the RAW
device to MMC/SD or NAND. Block media remembers the registered RAW device
irrespective of multiple times the application calls PSP_blkmediaAppRegister() and
PSP_blkmediaAppUnRegister() function.

12.5.2 Get RAW device

Block driver provides one more IOCTL to know which device is set as RAW Device.
Application has to call PSP_blkmediaDrvIoctl() function with
PSP_BLK_DRV_GETRAWDEV IOCTL command. For example

PSP_BlkDrvIoctlInfo_t drvIoctlInfo;

PSP_BlkDrvId_t device;

drvIoctlInfo.Cmd = PSP_BLK_DRV_GETRAWDEV;

drvIoctlInfo.pData = (Void*)&driverDev;

PSP_blkmediaDrvIoctl((Void*)&device, &drvIoctlInfo);

12.5.3 Register RAW Client

To register any storage device (NAND, MMCSD) as a RAW device, application needs
to call PSP_blkmediaAppRegister() function by passing,

1. Address of callback function which will be called after every read and write
function call.

2. Address of variable of PSP_BlkDevOps_t type structure, which will hold read,
write and IOCTL function pointers.

3. Address of variable (Handle) of type void*. Block Media returns the handle of
storage device in this parameter.

Application can now read, write and control device using the function pointers and
(Handle) which was returned from PSP_blkmediaAppRegister() function.

For example to register MMC driver as a RAW device, application needs to call
following function:

PSP_BlkDevOps_t pDevOps1;

PSP_BlkDevOps_t* pDevOps = &pDevOps1;

Ptr handle;

PSP_blkmediaAppRegister(&blkMmcsdTestCallBack, &pDevOps, &handle);

12.5.4 Read/Write

For writing and reading from the storage device, application has to call read/write
function pointer, using variable PSP_BlkDevOps_t structure which was returned by
PSP_blkmediaAppRegister(). Application has to pass

1. Variable (Handle) of type void* as a first argument, which was returned from
PSP_blkmediaAppRegister() function.

Page 126 of 234

C6748 BIOS PSP User Guide

2. Address of variable of structure PSP_BlkDevRes_t (to get error value).

3. Address of data buffer. (To or from data needs to be read or written).

4. Location of sector (Sector number) where data is required to be written.

5. Number of sectors to be written. (Size of data (bytes)/sector size (byte)).

For example, to read/write 1024 bytes from 0th sector number of MMC device which
has been registered as a RAW device, application needs to call following function:

PSP_BlkDevRes_t MMCSD_TestInfo;

Uint8 srcmmcsdBuf[1024];

Uint8 dstmmcsdBuf[1024];

pDevOps->Blk_Write(handle, (Ptr)&MMCSD_TestInfo, srcmmcsdBuf, 0, 2);

pDevOps->Blk_Read(handle, (Ptr)&MMCSD_TestInfo, dstmmcsdBuf, 0, 2);

12.5.5 IOCTL

For writing and reading from the storage device, application has to call ioctl function
pointer, using variable PSP_BlkDevOps_t structure which was returned by
PSP_blkmediaAppRegister(). Application has to pass

1. Variable (Handle) of type void* as a first argument, which was returned from
PSP_blkmediaAppRegister() function.

2. Address of variable of structure PSP_BlkDevRes_t (to get error value).

3. Address of variable of structure PSP_BlkDevIoctlInfo_t containing the ioctl
information.

4. Address of a bool variable.

For example, to get block size from the storage device which has been registered as
a RAW device, application needs to call following function:

PSP_BlkDevRes_t MMCSD_TestInfo;

PSP_BlkDevIoctlInfo_t ioctlInfo;

Uint32 blockSize;

Bool isComplete;

ioctlInfo.Cmd = PSP_BLK_GETBLKSIZE;

ioctlInfo.pData = (Void*)&blockSize;

pDevOps->Blk_Ioctl(handle, (Ptr)&MMCSD_TestInfo, &ioctlInfo,
&isComplete);

12.5.6 Unregister RAW device

To un-register a device, Block media driver provides PSP_blkmediaAppUnRegister()
function. Application needs to pass variable (Handle) which was returned in
PSP_blkmediaAppRegister() function.

Page 127 of 234

C6748 BIOS PSP User Guide

For example to un-register a device which has been registered as a RAW device,
application needs to call following function:

PSP_blkmediaAppUnRegister(Handle);

12.6 Use of Block Media driver for File System Interface
Block media driver is an interface layer between ERTFS and low level device driver
for storage. Block media provides adaptation of storage driver to ERTFS. Please note
it is required to set the FILE_SYSTEM macro to 1 for block media to work seamlessly
with the ERTFS file system. The macro is available in psp_blkdev.h. Once the block
media driver is initialized then the application can call any of the ERTFS API.
Following is the special case for interfacing with block media for ioctls:

12.6.1 IOCTL

To use any IOCTL functions of the block media or storage device user can use
following method

For using ioctl from the storage device, application has to call PSP_blkmediaDevIoctl ()
function. Application has to pass

1. Variable of type PSP_BlkDrvId_t as the first argument.

2. Address of variable of structure PSP_BlkDevIoctlInfo_t containing the ioctl
information.

For example, to get block size from the storage device application needs to call
following function:

PSP_BlkDevIoctlInfo_t ioctlInfo;

Uint32 blockSize;
ioctlInfo.Cmd = PSP_BLK_GETBLKSIZE;

ioctlInfo.pData = (Void*)&blockSize;

PSP_blkmediaDevIoctl(PSP_BLK_DRV_MMC0, &ioctlInfo);

12.7 Sources that need re-targeting

12.7.1 ti/pspiom/cslr/soc_C6748.h (soc specific header file):

This file contains target (SoC) specific definitions. In most cases, changing the values
for the SoC specific details done here should suffice. However, if there are major
changes in the hardware instance then the driver file may be needed to change.

12.8 EDMA3 Dependency
The block media driver uses TWO PaRAM sets. Block media driver relies on EDMA3
LLD driver to move data from/to application buffers to storage buffer for unaligned
application buffers; typically EDMA3 driver is PSP deliverable unless mentioned
otherwise. Please refer to the release notes that came with this release. Please
ensure that current PSP release is compliant with version of EDMA3 driver being
used.

Page 128 of 234

C6748 BIOS PSP User Guide

12.8.1.1 Used Paramset of EDMA 3
PSP driver uses TWO paramsets of EDMA3; if there are no paramsets are available the PSP
driver creation would fail. These paramsets are used through the life time of PSP driver. No link
paramsets are used.

12.9 Known Issues
Please refer to the top level release notes that came with this release.

12.10 Limitations
Please refer to the top level release notes that came with this release.

12.11 Block Media Sample application
Please refer to the sample application section of NAND and MMCSD for details on
interfacing block media for RAW interface.

Please note that the ti.pspiom.blkmedia.raw.a674 library needs to be linked for block
media to work seamlessly with media devices in raw mode.

Please refer to the examples section in the File system package for using the file
system interface. Please note that the ti.pspiom.blkmedia.filesystem.a674 library
needs to be linked for block media to work seamlessly with the ERTFS file system.

12.12 Dependencies
The storage sample application is dependent on the following drivers

a. Block media driver
b. Storage driver (MMCSD or NAND).
c. File system(In case file system calls are used)

Page 129 of 234

C6748 BIOS PSP User Guide

The block diagram below depicts the dependencies between the different drivers in
the sample application. The application interact with the block media driver interface
through RAW PSP block media calls or File system related calls (open, read, write
etc.). The block media interface internally interacts with the registered storage media
driver and finally the call comes to that particular storage media driver. The storage
media drivers internally use the operation mode configured to transfer the data from
the actual media device. The application needs to configure and initialize the block
media first and then the storage drivers in the required modes for operation.

12.12.1.1 Block media Driver

Block Media Driver module lies below the application and file system layer. The Block
Media Driver transfers calls from application/file system to the lower layer storage
drivers registered. The Block media driver is synchronous driver. Block media driver
is designed as a monolithic block of code in a single file as it is just a generic
abstraction layer between storage media drivers and File system/applications.
Storage driver gets themselves registered to the block media driver so that
application can use their services seamlessly.

12.12.1.2 Storage Driver

The Storage drivers are used for data storage to various devices e.g. multimedia
card (MMC)/secure digital (SD) card or NAND devices. Storage driver lies below the
Block Media module. The Block Media Driver transfers calls from application/file
system to the MMCSD driver which is registered to block media. The storage driver
actually read/write the data to the card.

The storage device driver is partitioned and its functionality can be enacted by three
key roles defined here under:

 Interfacing with the generic block media layer

APPLICATION

Block Media Driver

File System

DSP-
BIOS

Hardware

NAND etc.MMCSD

Raw Calls

Storage
Media
Driver

Page 130 of 234

C6748 BIOS PSP User Guide

 Implementing the protocol part of the driver

 Providing services to perform primitive access necessary to
control/configure/examine status, of the underlying h/w device.

12.12.1.3 File System

File system can be used if it is required to have a FAT file system on the storage
media. File system provided by RTFS, can be used to read and write data to a
storage device. Please refer to RTFS user guide for more details. The registration of a
storage driver to the file system is take care by the Block media driver.

12.12.1.4 Application

The Application can interact with the Storage driver either through file system or
through the RAW Calls.

Page 131 of 234

C6748 BIOS PSP User Guide

13 MMCSD driver

13.1 Introduction
This section is the reference guide for the MMCSD device driver which explains the
features and tips to use them.

DSP/BIOS applications use the mmcsd driver through the PSP APIs provided by
MMCSD package. The following sections describe in detail, procedures to use this
driver and configure it. It is recommended to go through the sample application to
get familiar with initializing and using the mmcsd driver.

13.1.1 Key Features

 Re-entrant safe driver

 Provides Async IO mechanism

 Configurable to operate in Polled and DMA mode

 Supports hot removal and insertion of MMC/SD card

 Supports variety of SD and MMC cards

13.2 Installation
The MMCSD device driver is a part of PSP product for C6748 and would be installed
as part of product installation.

13.2.1 MMCSD Component folder

On installation of PSP package for the C6748, the MMCSD driver can be found at
<ID>\ ti\pspiom\mmcsd\

As shown above, the mmcsd folder contains several sub-folders, the contents of
which are described below:

 mmcsd - The mmcsd folder is the place holder for the entire MMCSD driver.
This folder contains psp_mmcsd.h which is the header file included by the
application.

 build – contains CCS 3.3 / CCS 4 project file to build Mmcsd library.

 docs – Contains doxygen generated API reference.

 lib – Contains Mmcsd libraries

 src – Contains MMCSD driver’s source code.

13.2.2 Build Options

The MMCSD library can be built using the CCS v3.3 project file located at
<ID>\packages\ti\pspiom\mmcsd\build\C6748\ccs3\mmcsd.pjt. This project file
supports the following build configurations.

IMPORTANT NOTE:

Page 132 of 234

C6748 BIOS PSP User Guide

All build configurations require environment variable
%EDMA3LLD_BIOS5_INSTALLDIR% to be defined. This variable must point to
“<EDMA3_INSTALL_DIR>\packages”.

Debug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

iDebug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines “MMCSD_INSTRUMENTATION_ENABLED” to enable Mmcsd driver to
LOG debug messages.

Release:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

iRelease:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines “MMCSD_INSTRUMENTATION_ENABLED” to enable Mmcsd driver to
LOG debug messages.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver.

IMPORTANT NOTE:

Instrumentation code inside macros for idebug and irelease are not
implemented and are just a place holder for future implementation.

13.2.2.1 Required and Optional Pre-defined symbols

The Mmcsd library must be built with a soc specific pre-defined symbol.

“-DCHIP_C6748” is used above to build for C6748. Internally this define is used
to select a soc specific header file (soc_C6748.h). This header file contains
information such as base addresses of mmcsd devices, their event numbers, etc.

The MMCSD library can also be built with these optional pre-defined symbols.

Use -DPSP_DISABLE_INPUT_PARAMETER_CHECK when building library to turn
OFF parameter checking. This symbol is defined for Release and iRelease profiles
by default in the CCS 3.3 pjts provided.

Use -DNDEBUG when building library to turn off runtime asserts. This symbol is
defined for Release and iRelease profiles by default in the CCS 3.3 pjts provided.

13.3 Features
This section details the features of MMCSD and how to use them in detail.

Page 133 of 234

C6748 BIOS PSP User Guide

13.3.1 Multi-Instance

The MMCSD driver can operate on the instance 0 of MMCSD on the EVM 6748.

13.3.2 Notes for Usage of Driver

 PSP_blkmediaDevIoctl() could be used to invoke IOCTL calls on the Block Media
layer. Some IOCTLs are standard and need to be implemented by the underlying
media layer, and these IOCTL numbers are defined in psp_blkdev.h. These IOCTLs
are routed appropriately to the underlying media layer as applicable. However, some
IOCTL commands may be specific for underlying media layer. In such cases the
IOCTL command that is to be passed to PSP_blkmediaDevIoctl() is
(PSP_BLK_IOCTL_MAX + specific command number of the underlying media layer).
For example, PSP_BLK_GETOPMODE is a standard command and will return the
operating mode of the underlying media layer that is queried in the IOCTL call.
However, reading the registers from the MCMSD card is a specific operation on
MMCSD. This IOCTL number is defined in psp_mmcsd.h. The command number for
this should be passed as (PSP_MMCSD_IOCTL_GET_CARDREGS + PSP_BLK_IOCTL_MAX).

 Interrupt based card detection of card insertion on SD/MMC is not supported in the
driver. This should be taken care by application. Please refer to the sample
application for an implementation of the same. If the application would not want
interrupt based card detection of card insertion and still check the insertion of
MMCSD card then it could be polled for this via PSP_mmcsdCheckCard(). There is
also IOCTL which checks for presence of MMC/SD cards but this IOCTL will not work
through block media layer unless underlying device is registered with block media
layer, since the block media layer passes any device specific IOCTL calls to the
underlying media layer.

 The driver, exposed to the applications, can be used either using file system mode or
block media mode. Block media mode should be considered as RAW mode for
the system. Please refer to the block media documentation for block media API’s

13.4 Configurations
Following tables document some of the configurable parameter of MMCSD. Please
refer to psp_mmcsd.h for complete configurations and explanations.

13.4.1 Run time configuration

Applications could use following parameters to configure mmcsd driver at run time.
These parameters are provided when the mmcsd driver is initialized.

Parameters Description
moduleFreq MMCSD Controller clock frequency.
instanceId MMCSD instance id.
config MMCSD configuration pointer of type PSP_MmcsdConfig.

13.4.2 PSP_MmcsdPllDomain

The PSP_MmcsdPllDomain enumerated data type specifies the PLL domain to the
MMCSD device belongs. Following table lists the values of the data type.

Type Description
PSP_MMCSD_PLL_DOMAIN_0 PLL domain 0

Page 134 of 234

C6748 BIOS PSP User Guide

PSP_MMCSD_PLL_DOMAIN_1 PLL domain 1

13.4.3 PSP_MmcsdConfig

Applications could use this structure to configure the mmcsd. This is provided when
mmcsd is initialized.

Parameters Description
opMode MMCSD driver operating mode of type PSP_MmcsdOpMode. Only

Polled and EDMA mode is supported.
hEdma Edma Handle pointer.
eventQ EDMA Event Queue of type PSP_MmcsdEdmaEventQueue.

hwiNumber Hardware event number for mmcsd.
pscPwrmEnable Boolean flag to enable (TRUE) or disable (FALSE) any power

management in the driver
pllDomain Pll domain where the device is

Please note that the EDMA LLD driver supports multiple instances of the EDMA
hardware (2 in case of C6748). The handles to these instances will be valid after
calling the edma3init() API. The application should then appropriately pass the EDMA
handle via hEdma field above (hEdma[0] or hEdma[1]). If the application is
instantiating the driver for device instance number 0 and EDMA event from this
device instance are mapped to EDMA controller 0 then the application has to pass
hEdma[0].

13.4.4 Polled Mode

The configurations required for polled mode of operation are:

Init configuration opMode should be set to PSP_MMCSD_OPMODE_POLLED. Additionally
the EDMA handle parameter for the data transfer operation can be passed as NULL.

13.4.5 DMA Interrupt Mode

The configurations required for DMA Interrupt mode of operation are:

Init configuration opMode should be set to PSP_MMCSD_OPMODE_DMAINTERRUPT.
Additionally the hwiNumber assigned by the application for the MMCSD CPU events
group should be passed, so that the driver can enable proper interrupts. Also the
handle to the EDMA driver, hEdma, should be passed by the application. The Event
Queue, eventQ, parameter can be set to PSP_MMCSD_EDMA3_EVENTQ_0 or
PSP_MMCSD_EDMA3_EVENTQ_1.

13.5 Power Management Implementation

13.5.1 DVFS

If there is a request from application for changing the set points (V/F pair), the
driver takes care of this and change to the appropriate state. Before calling the set
point change event the application should make sure that there is no IO happening
inside the driver. If an IO is going on then the driver will not allow set point change.
Once the set point is changed the IO’s can be submitted again to the driver.

13.5.2 Sleep

If there is a request from application for moving to sleep state
(SLEEP/STANDBY/DEEPSLEEP), the driver takes care of these events and change to
the appropriate state. Before calling the sleep, the application should make sure that

Page 135 of 234

C6748 BIOS PSP User Guide

there is no IO happening in the driver. If an IO is going on then the driver will not
allow the sleep change. Once the set point is changed the IO’s can be submitted
again to the driver.

13.6 Control Commands
Following table describes some of important the control commands, for a
comprehensive list please refer the IOCTL defined in psp_mmcsd.h

Command Arguments Description

PSP_MMCSD_IOCTL_START NONE Used in RAW mode

PSP_MMCSD_IOCTL_GET_CAR
DREGS

PSP_MmcsdCard
Regs *

Pointer to an PSP_MmcsdCardRegs
variable, that would used by the
driver to return back the different
card register values

PSP_MMCSD_IOCTL_GET_BLO
CKSIZE

Uint32* Pointer to Uint32 variable, that
would used by the driver to return
back number of bytes per sector of
MMC/SD device

PSP_MMCSD_IOCTL_CHECK_C
ARD

PSP_MmcsdCard
Type *

Pointer to PSP_MmcsdCardType
variable, that would used by the
driver to return back which card is
present (MMC or SD)

PSP_MMCSD_IOCTL_GET_OPM
ODE

PSP_MmcsdOpMo
de *

Pointer to PSP_MmcsdOpMode variable
that would be used by the driver to
return back the operating mode of
the MMCSD device.

PSP_MMCSD_IOCTL_SET_CAL
LBACK

PSP_MmcsdAppC
allback *

Pointer to PSP_MmcsdAppCallback
variable that would be used by the
driver to set callback function which
will be called after every read/write.
This will be already used by Block
Media so application should not use
this, unless it is used for RAW mode
of operation without using block
media and file system.

PSP_MMCSD_IOCTL_SET_HWE
VENT_NOTIFICATION

PSP_MmcsdHwEv
entNotificati
on *

Pointer to
PSP_MmcsdHwEventNotification
variable that would use by the driver
to set callback function which will be
called for media insertion or
removal, to notify upper layer about
hardware events. This will be
already used by Block Media so
application should not use this,
unless it is used for RAW mode of
operation without using block media
and file system

PSP_MMCSD_IOCTL_GET_HWE
VENT_NOTIFICATION

PSP_MmcsdHwEv
entNotificati

Pointer to
PSP_MmcsdHwEventNotification

Page 136 of 234

C6748 BIOS PSP User Guide

on * variable that would be used by the
driver to return back callback
function which will be called for
media insertion or removal, to notify
upper layer about hardware events.

PSP_MMCSD_IOCTL_GET_CAR
D_SIZE

Uint32 * Pointer to Uint32 variable that would
be used by the driver to return size
of MMC/SD card in bytes for all
cards except for High capacity card.
In the case of High capacity SD card
, it is returned in KBytes and using
IOCTL
PSP_MMCSD_IOCTL_CHECK_HIGH_CAPA
CITY_CARD, it could be found
whether it is high capacity or not.

PSP_MMCSD_IOCTL_SET_TEM
PORARY_WP

Bool * Pointer to Bool variable, that would
used by the driver to set temporary
write protect state of MMC/SD card

PSP_MMCSD_IOCTL_GET_TEM
PORARY_WP

Bool * Pointer to Bool variable, that would
used to get temporary write protect
state of MMC/SD card

PSP_MMCSD_IOCTL_SET_PER
MANENT_WP

Bool * Pointer to Bool variable, that would
used by the driver to set permanent
write protect state of MMC/SD card

PSP_MMCSD_IOCTL_GET_PER
MANENT_WP

Bool * Pointer to Bool variable, that would
used by the driver to get permanent
write protect state of MMC/SD card

PSP_MMCSD_IOCTL_CHECK_H
IGH_CAPACITY_CARD

Bool * Pointer to Bool variable, that would
used by the driver to check if the
card is high capacity card or not.
This IOCTL will return true in if it is
high capacity card else false.

PSP_MMCSD_IOCTL_GET_TOT
AL_SECTORS

Uint32 * Pointer to Uint32 variable, that
would used by the driver to return
size of MMC/SD card in sectors

PSP_MMCSD_IOCTL_SET_EVE
NTQ

PSP_MmcsdEdma
EventQueue *

Pointer to
PSP_MmcsdEdmaEventQueue variable,
that would used by the driver to set
event queue of EDMA channel

PSP_MMCSD_IOCTL_SET_CAR
D_FREQUENCY

PSP_CardFrequ
ency *

Pointer to PSP_CardFrequency
variable that would be used by the
driver to set the frequency of card at
which it is supposed to operate.

PSP_MMCSD_IOCTL_GET_CAR
D_VENDOR

Uint32 * Pointer to Uint32 variable, that
would used by the driver to return
back the vendor id of MMC/SD

PSP_MMCSD_IOCTL_GET_CON Uint32 * Pointer to Uint32 variable as first

Page 137 of 234

C6748 BIOS PSP User Guide

TROLLER_REG parameter which pass register
address offset and another Uint32
pointer variable, the place holder to
get value at that register offset.

PSP_MMCSD_IOCTL_SET_CON
TROLLER_REG

Uint32 * Pointer to Uint32 variable as first
parameter which pass register
address offset and another Uint32
pointer variable, the value needs to
be written at that register offset.

13.7 MMCSD Driver APIs
Following sections explain the use of parameters of MMCSD calls in the context of
PSP driver. Only PSP specific requirements are covered below.

13.7.1 PSP_mmcsdDrvInit

Parameter
Number

Parameter Specifics to PSP

1 moduleFreq MMCSD controller clock frequency

2 instanceId MMCSD instance id number

3 config MMCSD config parameter of type
PSP_MmcsdConfig *

13.7.2 PSP_mmcsdDrvDeInit

Parameter
Number

Parameter Specifics to PSP

1 instanceId MMCSD instance id number

13.7.3 PSP_mmcsdCheckCard

Parameter
Number

Parameter Specifics to PSP

1 cardType MMCSD Card variable to be
updated by this function. It is of
type PSP_MmcsdCardType *

2 instanceId MMCSD instance id number

13.8 Sources that need re-targeting

13.8.1 ti/pspiom/cslr/soc_C6748.h (soc specific header file):

This file contains target (SoC) specific definitions. In most cases, changing the values
for the SoC specific details done here should suffice. However, if there are major
changes in the hardware instance then the driver file may be needed to change.

Page 138 of 234

C6748 BIOS PSP User Guide

13.9 EDMA3 Dependency
MMCSD driver relies on EDMA3 LLD driver to move data from/to application buffers
to peripheral; typically EDMA3 driver is PSP deliverable unless mentioned otherwise.
Please refer to the release notes that came with this release. Please ensure that
current PSP release is compliant with version of EDMA3 driver being used.

13.10 Known Issues
Please refer to the top level release notes that came with this release.

13.11 Limitations
Please refer to the top level release notes that came with this release.

13.12 MMCSD Sample applications

13.12.1 Dma mode sample

13.12.1.1 Description:

This sample demonstrates the use of the MMCSD driver in DMA mode.

The mmcsdSample.tcf file contains the BIOS configuration. The most important lines
in this file which the application may need to pull into his tcf file are as follows.

bios.ECM.ENABLE = 1;

bios.HWI.instance("HWI_INT7").interruptSelectNumber = 0;

These lines configure the ECM module and map mmcsd events to CPU interrupts. For
example the Mmcsd event number is 15 which fall in ECM group 0. Here ECM group
0 is mapped to HWI_INT7.

The main() should enable the power of other modules that are used. Sample
application calls the mmcsdPscInit() which is defined in the evmInit library.

The echo() task demonstrated the usage of the mmcsd driver. The configureMmcsd()
function inside the platform file takes care of configuring the PINMUXes of MMCSD
and GPIO (used for interrupt based detection of card insertion).

The init function is mmcsdStorageInit() calls the initialization functions for EDMA3
LLD, block media layer and MMCSD driver. Please refer to the platforms section in
this guide for more details.

Please note that mmcsdStorageInit() and mmcsdStorageDeinit() functions provided
by the platform layer are for the ease for sample application writer. If the application
wants to address multiple media, then these APIS should not be used as block media
and EDMA initialization is required only once throughout the system

The sample application uses interrupt based detection of card insertion and write
protect status via GPIO. To enable this Mmcsd_GPIO_CDWP_ENABLE should be
defined in the project as a compiler definition. The macro
Mmcsd_GPIO_CDWP_ENABLE is by default enable in the sample application pjt.

13.12.1.2 Build:

 This sample can be built using

<ID>/packages/ti/pspiom/examples/evm6748/mmcsd/edma/build/ccs3/mmcsdSa
mple.pjt

Page 139 of 234

C6748 BIOS PSP User Guide

13.12.1.3 Setup:

You need to put a MMC or SD card in the MMCSD slot.

13.12.1.4 Output:

When the sample application runs, it will demonstrate the usage of MMCSD in RAW
mode. The applications show the usage of various MMCSD and block media IOCTL
and then do the read/write operation on some sectors of the MMC or SD card. The
output can be seen on the trace window.

Page 140 of 234

C6748 BIOS PSP User Guide

14 NAND driver

14.1 Introduction
This section is the reference guide for the NAND device driver which explains the
features and tips to use them.

DSP/BIOS applications use the driver typically through PSP APIs provided by NAND
package. The following sections describe in detail, procedures to use this driver and
configure it.

14.1.1 Key Features

 Supports 512-byte page and 2048-byte page NAND devices

 Supports 8-bit and 16-bit NAND devices

 Error correction using 4-bit ECC mechanism

 Supports wear-leveling and bad-block management functionalities

 Supports protecting a portion of the NAND flash from application access

14.2 Installation
The NAND device driver is a part of PSP product for C6748 and would be installed as
part of product installation.

14.2.1 NAND Component folder

On installation of PSP package for the C6748, the NAND driver can be found at
<ID>\ ti\pspiom\nand\

As shown above, the nand folder contains several sub-folders, the contents of which
are described below:

 nand - The nand folder is the place holder for the entire NAND driver. This
folder contains psp_nand.h which is the header file included by the
application.

 build – contains CCS 3.3 / CCS 4 project file to build Nand library.

 docs – Contains doxygen generated API reference.

 lib – Contains Nand libraries

 src – Contains Nand driver’s source code.

14.2.2 Build Options

The Nand library can be built using the CCS v3.3 project file located at
<ID>\packages\ti\pspiom\nand\build\C6748\ccs3\nand.pjt. This project file supports
the following build configurations.

Page 141 of 234

C6748 BIOS PSP User Guide

IMPORTANT NOTE:

All build configurations require environment variable
%EDMA3LLD_BIOS5_INSTALLDIR% to be defined. This variable must point to
“<EDMA3_INSTALL_DIR>\packages”.

Debug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

iDebug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines “NAND_INSTRUMENTATION_ENABLED” to enable Nand driver to LOG
debug messages.

Release:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

iRelease:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines “NAND_INSTRUMENTATION_ENABLED” to enable Nand driver to LOG
debug messages.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

IMPORTANT NOTE:

Instrumentation code inside macros for idebug and irelease are not
implemented and are just a place holder for future implementation.

14.2.2.1 Required and Optional Pre-defined symbols

The Nand library must be built with a soc specific pre-defined symbol.

“-DCHIP_C6748” is used above to build for C6748. Internally this define is used
to select a soc specific header file (soc_C6748.h). This header file contains
information such as base addresses of nand devices, their event numbers, etc.

The Nand library can also be built with these optional pre-defined symbols.

Use -DPSP_DISABLE_INPUT_PARAMETER_CHECK when building library to turn
OFF parameter checking. This symbol is defined for Release and iRelease profiles
by default in the CCS 3.3 pjts provided.

Use -DNDEBUG when building library to turn off runtime asserts. This symbol is
defined for Release and iRelease profiles by default in the CCS 3.3 pjts provided.

Page 142 of 234

C6748 BIOS PSP User Guide

14.3 Features
This section details the features of NAND and how to use them in detail.

14.3.1 Multi-Instance

The NAND driver can operate on 0 instance of EMIFA on the EVM 6748.

14.3.2 Supports 512-byte page and 2048-byte page NAND devices

NAND driver supports both 512-byte page and 2048-byte page devices. The driver
learns about the page size of the device by looking up the device ID and
manufacturer ID in the NAND device organization lookup table. Sector write and read
operations are then performed for the entire length of the sector without requiring
additional configurations.

14.3.3 Supports 8-bit and 16-bit NAND devices

NAND driver supports both 8-bit and 16-bit NAND devices. The driver learns about
the bus width of the device by looking up the device ID and manufacturer ID in the
NAND device organization lookup table. The driver configures the external memory
interface module for the appropriate data bus width.

CAUTION: Driver has not been validated / tested with ONFi compliant NAND devices.

14.3.4 Error correction using 4-bit ECC

NAND driver supports error correction using 4-bit ECC algorithm. The driver uses the
external memory interface module for 4-bit ECC parity generation and error
correction. The parity generated during the sector write operation is copied in the
spare area of the page. During sector reads, the parity stored in the spare area is
read back for the error detection and correction operation.

ECC hardware used is capable of correcting a maximum of 32 bits errors, provided
that these errors occur in 4 bytes for every 512 bytes of data and these 4 bytes need
not be contiguous. If these 32 bits errors (or less than 32 bits but greater than 4
bits) span across 5 bytes of data in 512 byte data boundary the bit errors cannot be
corrected.

14.3.5 Supports wear-leveling and bad-block management functionalities

NAND driver supports block wear-leveling and bad block management functionalities.
These functionalities are transparent to the application, that is, the applications need
not be aware of the wear leveling and bad block management activities performed by
the driver.

14.3.6 Supports protecting a portion of the NAND flash from application access

NAND driver supports protecting a portion the NAND flash from application access.
The protected portion of the NAND flash starts from the second block of the NAND
device to an application specified block number. The application can specify the
number of blocks to be protected during the driver initialization. All the protected
blocks are excluded from the read-write operations.

14.4 Configurations
This section describes the NAND driver data types, data structures, and configurable
parameters of NAND driver. NAND Media could be accessed through File system or
sector level (bypassing the file system). Following tables document some of the
configurable parameter of NAND. Please refer to psp_nand.h for complete
configurations and explanations.

Page 143 of 234

C6748 BIOS PSP User Guide

14.4.1 Configuration defines

The following configuration defines are provided:

Members Default
Values

Description

PSP_NAND_RESERVED_BLOCKS 24u Number of blocks that would be reserved by
NAND driver and would be used as a
replacement block for a detected BAD block.
These blocks will not be visible to applications.

PSP_NAND_MAX_PAGES_IN_BLOCK 128u Specifies maximum number of pages that would
be support by driver in a given block.

PSP_NAND_MAX_CACHE_LINES 8u Configure maximum number of CACHE lines that
NAND driver could use. Please refer the
architecture document that came with this
release for details.

PSP_NAND_MAX_PAGE_SIZE 2048u Specifies the maximum size of a page that
would be support by NAND driver.

PSP_NAND_FTL_MAX_LOG_BLOCKS 4096u Maximum number of logical blocks that can be
managed by FTL module. The value of this
constant can be changed as per the
requirement. For example, if the driver is used
with a NAND device that has only 2048 blocks,
then this constant can be set to 2048.

PSP_NAND_FTL_MAX_PHY_BLOCKS 4096u Maximum number of physical blocks that can be
managed by FTL module. The value of this
constant can be changed as per the
requirement. For example, if the driver is used
with a NAND device that has only2048 blocks,
then this constant can be set to 2048.

14.4.2 Nand Driver Data types

14.4.2.1 PSP_nandType - The PSP_nandType enumerated data type specifies the types of
NAND devices supported by the NAND driver. Following table lists the values of the
data type.

Type Description
PSP_NT_NAND Device type is NAND device

PSP_NT_ONENAND Device type is OneNAND device (not supported)

PSP_NT_INVALID Device type is unknown

14.4.2.2 PSP_NandOpMode - The PSP_NandOpMode enumerated data type specifies the
mode of operation in which the nand driver will be used. Following table lists the
values of the data type.

Type Description
PSP_NAND_OPMODE_POLLED Polled mode of operation

PSP_NAND_OPMODE_INTERRUPT Interrupt mode of operation (not supported)

PSP_NAND_OPMODE_DMAINTERRUPT DMA mode of operation

Page 144 of 234

C6748 BIOS PSP User Guide

14.4.2.3 PSP_nandPllDomain - The PSP_nandPllDomain enumerated data type specifies the
PLL domain to the NAND device belongs. Following table lists the values of the data
type.

Type Description
PSP_NAND_PLL_DOMAIN_0 PLL domain 0

PSP_NAND_PLL_DOMAIN_1 PLL domain 1

14.4.3 Nand Driver Data Structures

14.4.3.1 PSP_nandDeviceInfo - The PSP_nandDeviceInfo data structure specifies the device
organization of the NAND device. Following table lists the elements of this data
structure.

Members Description
vendorId Vendor/Manufacturer/Maker ID of NAND device

deviceId Device ID of the NAND device

pageSize Size of each page

pagesPerBlock Number of pages per block

numBlocks Number of blocks in the NAND device

spareAreaSize Size of spare area of each page

dataBusWidth Data bus width of the NAND device

14.4.3.2 PSP_nandDeviceTiming - The PSP_nandDeviceTiming data structure specifies the
timing characteristics of the NAND device. Following table lists the elements of this
data structure.

Members Description
vendorId Vendor/Manufacturer/Maker ID of NAND device

deviceId Device ID of the NAND device

writeSetup Write setup time in ns

writeStrobe Write strobe time in ns

writeHold Write hold time in ns

readSetup Read setup time in ns

readStrobe Read strobe time in ns

readHold Read hold time in ns

turnAround Turnaround time in ns

14.4.3.3 PSP_nandConfig - The PSP_nandConfig data structure specifies parameters for
initializing and configuring the NAND driver. Following table lists the elements of this
data structure.

Members Description
inputClkFreq EMIF input clock frequency for calculating the timing

values for the EMIF

Page 145 of 234

C6748 BIOS PSP User Guide

nandType Type of NAND flash. (NAND or OneNAND)

opMode Data transfer mode used by the NAND driver.
Supported data transfer modes are polled and EDMA
mode

eraseAtInit If TRUE, enables erase of the complete NAND flash
during initialization

protectedBlocks Number of protected blocks that are not mapped as
logically available storage area

hEdma EDMA driver handle use in EDMA operating mode

edmaEvtQ EDMA event queue number to be used in EDMA data
transfer mode

nandDevInfo NAND Device organization information

nandDevTiming NAND device timing information
pscPwrmEnable Boolean flag to enable (TRUE) or disable (FALSE) any

power management in the driver

Please note that the EDMA LLD driver supports multiple instances of the EDMA
hardware (2 in case of C6748). The handles to these instances will be valid after
calling the edma3init() API. The application should then appropriately pass the EDMA
handle via hEdma field above (hEdma[0] or hEdma[1]). The NAND driver uses free
EDMA channels (channels that are not mapped to any device as per the EDMA LLD
configuration). These free channels are configured for every instance of the EDMA
LDD driver. The application should decide on the EDMA driver instance it will use and
pass the EDMA handle appropriately via hEdma. If the application decides to use free
channels from EDMA handle 0 then it should pass hEdma[0] and hEdma[1]
otherwise.

14.4.4 Polled Mode

The configurations required for polled mode of operation are:

Init configuration opMode should be set to PSP_NAND_OPMODE_POLLED. The EDMA
handle can be NULL in this mode of operation.

14.4.5 DMA Interrupt Mode

The configurations required for DMA Interrupt mode of operation are:

Init configuration opMode should be set to PSP_NAND_OPMODE_DMAINTERRUPT.
Also the handle to the EDMA driver, hEdma, and the event queue number should be
passed by the application.

14.5 Power Management Implementation

14.5.1 DVFS

If there is a request from application for changing the set points (V/F pair), the
driver takes care of this and change to the appropriate state. Before calling the set
point change event the application should make sure that there is no IO happening
inside the driver. If an IO is going on then the driver will not allow set point change.
Once the set point is changed the IO’s can be submitted again to the driver.

Page 146 of 234

C6748 BIOS PSP User Guide

14.5.2 Sleep

If there is a request from application for moving to sleep state
(SLEEP/STANDBY/DEEPSLEEP), the driver takes care of these events and change to
the appropriate state. Before calling the sleep, the application should make sure that
there is no IO happening in the driver. If an IO is going on then the driver will not
allow the sleep change. Once the set point is changed the IO’s can be submitted
again to the driver.

14.6 Control Commands
The PSP_nandIoctlCmd enumerated data type specifies the IOCTL commands
supported by the NAND driver. When using NAND driver via File system or using
RAW mode of operation via Block Media driver, use block media API
PSP_blkmediaDevIoctl() to send control commands to NAND driver. Note that the
command should be one of the enumerations PSP_nandIoctlCmd added with
PSP_BLK_IOCTL_MAX. Following table describes some of important the control
commands, for a comprehensive list please refer the IOCTL defined in psp_nand.h.
Following table lists the values of the data type:

Command Arguments Description

PSP_NAND_IOCTL_GET_NAND
_SIZE

Uint32 * Determine the usable number of
logical sectors in the device

PSP_NAND_IOCTL_GET_SECT
OR_SIZE

Uint32 * Determine the page size of the
device

PSP_NAND_IOCTL_SET_EVEN
TQ

Uint32 * Set the EDMA event queue for EDMA
mode data transfer

PSP_NAND_IOCTL_ERASE_BL
OCK

Uint32 * Erase a logical block

PSP_NAND_IOCTL_GET_OPMO
DE

Uint32 * Returns the current operation mode
of NAND driver.

PSP_NAND_IOCTL_GET_DEVI
CE_INFO

PSP_nandDevic
eInfo *

Returns the device details.

14.7 NAND Driver APIs
Following sections explain the use of parameters of NAND calls in the context of PSP
driver. Only PSP specific requirements are covered below.

14.7.1 PSP_nandDrvInit

Parameter
Number

Parameter Specifics to PSP

1 config Configuration parameters of type
PSP_nandConfig * is passed.

14.7.2 PSP_nandDrvDeInit

Parameter
Number

Parameter Specifics to PSP

Page 147 of 234

C6748 BIOS PSP User Guide

1 Void None

14.8 Sources that need re-targeting

14.8.1 ti/pspiom/cslr/soc_C6748.h (soc specific header file):

This file contains target (SoC) specific definitions. In most cases, changing the values
for the SoC specific details done here should suffice. However, if there are major
changes in the hardware instance then the driver file may be needed to change.

14.9 EDMA3 Dependency
NAND driver uses ONE PaRAM set. NAND driver relies on EDMA3 LLD driver to move
data from/to application buffers to peripheral; typically EDMA3 driver is PSP
deliverable unless mentioned otherwise. Please refer to the release notes that came
with this release. Please ensure that current PSP release is compliant with version of
EDMA3 driver being used.

14.9.1.1 Used Paramset of EDMA 3
PSP driver uses one paramsets of EDMA3; if there are no paramsets are available the PSP
driver creation would fail. These paramsets are used through the life time of PSP driver.

14.10 Known Issues
Please refer to the top level release notes that came with this release.

14.11 Limitations
Please refer to the top level release notes that came with this release.

14.12 NAND Sample applications

14.12.1 DMA Interrupt mode sample

14.12.1.1 Description:

This sample demonstrates the use of the Nand driver in DMA mode.

The nandSample.tcf file contains the BIOS configuration.

The echo() task exercises the nand driver. The configureNand function inside the
platform file takes care of configuring the PINMUXes for NAND.

The init function is nandStorageInit() calls the edma3init(), block media init and then
the nand init, which initializes the nand driver.

The edma3init() initializes the EDMA3 driver and sets up EDMA handle. Please refer
to the platforms section in this guide for more details.

Please note that nandStorageInit() and nandStorageDeinit() functions provided by
the platform layer are for the ease for sample application writer. If the application
wants to addresss multiple media, then these APIS should not be used as block
media and edma initialization is required only once throughout the system.

14.12.1.2 Build:

 This sample can be built using

<ID>/packages/ti/pspiom/examples/evm6748/nand/edma/build/ccs3/nandSample.
pjt

Page 148 of 234

C6748 BIOS PSP User Guide

14.12.1.3 Setup:

You need to connect a daughter card having NAND to the EVM 6748.

14.12.1.4 Output:

When the sample application runs, it will demonstrate the usage of NAND in RAW
mode. The applications show the usage of various NAND and block media IOCTL and
then do the read/write operation on some sectors of the NAND device. The output
can be seen on the trace window.

Page 149 of 234

C6748 BIOS PSP User Guide

15 McBSP Driver

15.1 Introduction
This document is the reference guide for the Mcbsp device driver which explains the
features and guidelines for using the driver.

DSP/BIOS applications use the driver typically through APIs provided by SIO layer,
to transmit and receive data. The following sections describe in detail, the
procedures to use this driver and configure it. It is recommended to go through the
sample application to get familiar with initializing and using the Mcbsp driver.

15.1.1 Key Features

 Multi-instance support and re-entrant driver

 Each instance can operate as a receiver and or transmitter.

 Supports multiple data formats.

 Can be configured to operate in multi-slot TDM, I2S, and DSP. (Used in audio
data transfer).

 Mechanisms to transmit desired data (such as NULL tone) when idle

15.2 Installation
The Mcbsp device driver is a part of PSP product for C6748 and would be installed as
part of product installation.

15.2.1 PSP Component folder

On installation of the PSP package for C6748, the PSP driver can be found at <ID>\
ti\pspiom\mcbsp

As shown above the McBSP folder contains several sub-folders, the contents of which
are described below:

 Mcbsp - The Mcbsp folder is the place holder for the entire Mcbsp driver. This
folder contains Mcbsp.h which is the header file to be included by all the
applications using the McBSP driver.

 build – contains CCS 3.3 / CCS 4 project file to build Mcbsp library.

 docs – Contains doxygen generated API reference.

 lib – contains Mcbsp libraries

 src – contains Mcbsp driver’s source code.

15.2.2 Build Options

The McBSP library can be built using the CCS v3.3 project file located at
<ID>\packages\ti\pspiom\mcbsp\build\C6748\ccs3\mcbsp.pjt. This project file
supports the following build configurations.

It can also be built using the CCS4 project files located at the
<ID>\packages\ti\pspiom\mcbsp\build\C6748\

Page 150 of 234

C6748 BIOS PSP User Guide

IMPORTANT NOTE:

All build configurations require environment variable
%EDMA3LLD_BIOS5_INSTALLDIR% to be defined. This variable must point to
“<EDMA3_INSTALL_DIR>\packages”.

Debug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines “-DMcbsp_LOOPJOB_ENABLED” to enable loop job mode support in
Mcbsp driver. It also contains “-i%EDMA3LLD_BIOS5_INSTALLDIR%” to find
EDMA3 header files.

iDebug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines “-DMcbsp_LOOPJOB_ENABLED” to enable loop job mode support in
Mcbsp driver. It also contains “-i%EDMA3LLD_BIOS5_INSTALLDIR%” to find
EDMA3 header files.

 Defines “Mcbsp_DEBUGPRINT_ENABLE to enable Mcbsp driver to LOG debug
messages.

Release:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines “-DMcbsp_LOOPJOB_ENABLED” to enable loop job mode support in
Mcbsp driver. It also contains “-i%EDMA3LLD_BIOS5_INSTALLDIR%” to find
EDMA3 header files.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

iRelease:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines “-DMcbsp_LOOPJOB_ENABLED” to enable loop job mode support in
Mcbsp driver. It also contains “-i%EDMA3LLD_BIOS5_INSTALLDIR%” to find
EDMA3 header files.

 Defines “Mcbsp_DEBUGPRINT_ENABLE to enable Mcbsp driver to LOG debug
messages.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

15.2.2.1 Required and Optional Pre-defined symbols

The Mcbsp library must be built with a soc specific pre-defined symbol.

“-DCHIP_C6748” is used above to build for EVM C6748. Internally this define is
used to select a soc specific header file (soc_C6748.h). This header file contains
information such as base addresses of mcbsp devices, their event numbers, etc.

Page 151 of 234

C6748 BIOS PSP User Guide

The Mcbsp library can also be built with these optional pre-defined symbols.

Use -DPSP_DISABLE_INPUT_PARAMETER_CHECK when building library to turn
OFF parameter checking. This symbol is defined for Release and iRelease profiles
by default in the CCS 3.3 pjts provided.

Use -DNDEBUG when building library to turn off runtime asserts. This symbol is
defined for Release and iRelease profiles by default in the CCS 3.3 pjts provided.

Use –DMcbsp_LOOPJOB_ENABLE when the loop job buffer support needs to be
enabled. If this support is not enabled, the Mcbsp driver works in non loop job
enabled mode.

15.3 Features
This section details the features of Mcbsp and how to use them in detail.

15.3.1 Multi-Instance

The Mcbsp driver can operate on all the instances of Mcbsp on the EVM C6748.
Different instances may be specified during driver creation time, and instances 0
through 1 with corresponding device IDs 0 through 1 are supported, respectively.

These instances can operate simultaneously with configurations supported by the
Mcbsp driver. Mcbsp instances are created as follows:

1. Static creation – static creation is done in the “tcf” file of the
application; this creation happens at build time. The UDEV module
(UDEV.create) is used during static configuration. An instance of the
UDEV module at static configuration time corresponds to creating and
initializing an MCBSP instance

2. Dynamic creation – Dynamic creation of an Mcbsp instance is done in
the application source files by calling DEV_createDevice(); this
creation happens at runtime.

UDEV.create and DEV_createDevice allow user to specify the following:

 iomFxns: Pointer to IOM function table. Mcbsp requires this field to be
Mcbsp_IOMFXNS.

 initFxn: MCBSP requires that the user call Mcbsp_init() as part of this initFxn.
Users can also directly hook in Mcbsp_init().

 device parameters: Mcbsp requires the user to pass an Mcbsp_Params struct.
This struct must exist in the application source files and it must be initialized
very early as part of driver specific initFxn.

 deviceId to identify the Mcbsp peripheral.

For more information on configuring UDEV and Mcbsp, please refer to the sample
application (included with this driver release), and the DSP/BIOS API Reference
(spru403o.pdf, included in your DSP/BIOS installation).

15.3.2 Each Instance as Transmitter and / or receiver

Mcbsp driver can be simultaneously operated as a transmitter and or receiver. This
could be achieved by creating an SIO Channel as an INPUT channel and creating
another SIO Channel as an OUTPUT channel. The type of Channel is specified while

Page 152 of 234

C6748 BIOS PSP User Guide

creating the channel (using SIO_create ()specify “IOM_OUTPUT” or
“IOM_INPUT”).

15.3.3 Supported Data Formats

Mcbsp driver expects the data (samples) to be arranged in a specific format when
requesting for an IO transfer. These formats are explained under scenario of using 1
slot or multiple slots. The sections below capture the details of supported data
formats.

15.3.3.1 Mcbsp_BufferFormat_1SER_1SLOT

This format is used when a single slot is used to transfer the data. The expected data
format is as depicted below.

[<Slot1-Sample1>, <Slot1-Sample2>…<Slot1-SampleN>]

The size (number of bytes) that would be required to specify during an IO request is
computed using the formula size = <word width>*<number of samples N>. The
sample application that came with this package demonstrates the use of this data
format.

The key configurations are

 Mcbsp_ChanParams.dataFormat = Mcbsp_BufferFormat_1SER_1SLOT;

 Mcbsp_ChanParams. noOfTdmChans = 1;

 The size of the IO request is computed as <No of Bytes per Sample> * <
No of Samples >. This value should be given as a size parameter of
SIO_submit ()

 Idle Time data pattern length computation. Minimum length should be <word
width in bytes> or an integral multiple of computed value. While allocating
buffer, allocate <computed value> * <no of slots enabled>.

15.3.3.2 Mcbsp_BufferFormat_1SER_MULTISLOT_NON_INTERLEAVED

When configured in this mode, it is expected that PSP driver is configured to use
multiple slots. The expected data format is as depicted below. When configured to
use multiple slots, the samples are expected to be contiguous for a given slot, as
depicted below. The assumption here is no of slots is 2 and no of samples is N.

[<Slot1-Sample1>, <Slot1-Sample2>..…<Slot1-SampleN>,

 <Slot2-Sample1>, < Slot2-Sample2>….. < Slot2-SampleN>]

McBSP
Mode

Data Format Buffer Format

1 Slot Interleaved Data Format Mcbsp_BufferFormat_1SER_1SLOT

Multi Slot Interleaved Data Format Mcbsp_BufferFormat_1SER_MULTISLOT_NON_IN
TERLEAVED

Multi Slot Non-interleaved data
format

Mcbsp_BufferFormat_1SER_MULTISLOT_INTERL
EAVED

Page 153 of 234

C6748 BIOS PSP User Guide

The key configurations are

 Mcbsp_ChanParams.dataFormat= Mcbsp_BufferFormat_1SER_MULTISLOT_NON
_INTERLEAVED;

 Mcbsp_ChanParams. noOfTdmChans = N;

 The size of the IO request is computed as <No of Bytes per Sample> * <
No of Samples > * <No of slots>. This value should be given as a size
parameter of SIO_submit ()

 Idle Time data pattern length computation. Minimum length should be <word
width in bytes> or an integral multiple of computed value. While allocating
buffer, allocate <computed value> * <no of slots enabled>.

15.3.3.3 Mcbsp_BufferFormat_1SER_MULTISLOT_INTERLEAVED

When configured to use multiple slots and interleaved format. The samples are
expected to be interleaved for the slots, as depicted below. The assumption here is
no of slots is 2 and no of samples is N

[<Slot1-Sample1>, <Slot2-Sample1>…<Slot1-SampleN><Slot2-SampleN>]

The key configurations are

 Mcbsp_ChanParams.dataFormat= Mcbsp_BufferFormat_1SER_MULTISLOT_
INTERLEAVED;

 Mcbsp_ChanParams. noOfTdmChans = N;

 The size of the IO request is computed as <No of Bytes per Sample> * <
No of Samples > * <No of slots>. This value should be given as a size
parameter of SIO_submit ()

 Idle Time data pattern length computation. Minimum length should be <word
width in bytes> or an integral multiple of computed value. While allocating
buffer, allocate <computed value> * <no of slots enabled>.

15.3.4 Operational Modes (McBSP, SPI)

15.3.4.1 McBSP

To configure McBSP to work in the normal McBSP mode, configure the mode during
the device instance creation as “Mcbsp_OperatingMode_McBSP”

15.3.4.2 SPI

McBSP can be configured to work in the SPI mode of operation. It can operate in
either the master mode or the slave mode.To configure McBSP to work in the SPI
mode,configure the mode during the operation of the device creation as
“Mcbsp_OperatingMode_SPIMASTER” or “Mcbsp_ OperatingMode_SPISLAVE”.

Note: The SPI mode of operation is supported only in the SOCs that support
operation of the McBSP in SPI mode.The current C6748 SOC does not support the
SPI mode of operation.

15.4 Power management Considerations
The Mcbsp driver supports the V/F scaling and sleep mode power management
features. The following points should be kept in mind when working with the power
management enabled.

Page 154 of 234

C6748 BIOS PSP User Guide

 The McBSP driver supports power management features only when the driver
is compiled for NON loop job mode.

 Enabling the power management in the loop job mode will result in an error
return status from the driver.

For other details on the power management support please refer to Power
Management section

15.5 IDLE Time Data Patterns
IDLE Time in the context of Mcbsp could be better explained under the CREATE Time
and Run Time. The sections below explain the behavior of Bit Clock, Frame Sync and
Data signals.

15.5.1 Create Time

On successful creations of SIO instances, the Mcbsp driver starts generating the
clock, Frame Sync and data (if configured as source / if configured as sink Mcbsp
expects these signals). The data that would be sent out at this point can be
configured using Mcbsp_ChanParams.userLoopJobBuffer and Mcbsp_ChanParams
.userLoopJobLength. Optionally this could be set NULL and 0x0 respectively, the
driver uses driver’s internal buffers and length of these NULL buffers is 4 bytes.

15.5.2 Run Time

If the applications could not meet the real time needs of transmission/reception of
data, Mcbsp driver steps in to consume to received the data or transmit a known
data pattern.

Mcbsp driver could be configured to send out a know pattern whenever the above
situation arises using Mcbsp_ChanParams.userLoopJobBuffer and
Mcbsp_ChanParams.userLoopJobLength. Optionally this could be set NULL and 0x0
respectively, the Mcbsp driver uses driver’s internal buffers and length of these NULL
buffers is 4 bytes.

15.5.3 IDLE Time buffer size

This IDLE Time data patterns could possibly have un-intended effects, if used in-
correctly. It is recommended that following method is used to calculate the size of
the IDLE time buffers.

Size of Idle Time buffers = <width of slot in bytes> * <no of slots enabled>

If the application does not supply the idle time buffers, the Mcbsp driver would use
its internal buffer of length 4 bytes when operating in TDM mode.

CAUTION: If the computed size does not match the logical end of slots, the
channels could be swapped. A quick way to check would be to monitor the frame
sync and data line/s on scope and send out unique pattern in each slot of the idle
time buffer.

Note: This feature can be enabled or disabled by enabling/disabling the
“Mcbsp_LOOPJOB_ENABLED” complier switch.

15.6 Clock Configuration (EVM C6748)
McBSP drivers sample applications that came with this release are configured so that
the one EVM (slave) uses the bit clock and the frame sync supplied by the other EVM
(Master).The configurations are as explained in the following sections. The sample
application demonstrates the data transfer between two EVMs. One EVM is

Page 155 of 234

C6748 BIOS PSP User Guide

continuously transferring a known pattern of data and the other is continuously
capturing the data and comparing the received data with the known pattern.

15.7 Configurations
Following tables document some of the configurable parameter of McBSP. Please
refer to Mcbsp.h for complete configurations and explanations.

15.7.1 Mcbsp_Params

This structure defines the device configurations, expected to supply while creating
the driver. This is provided when driver channels are created (e.g. SIO_create).

Members Description

mode Driver operational mode (i.e. McBSP or SPI) SPI mode
support is only available on supported SOCs.

opMode Driver mode of operation (DMA mode is only
supported).

enableCache whether driver needs to support the cache operations

emulationMode Emulation mode selection(FREE/SOFT etc)

dlbMode Loop back mode enable or disable

clkStpMode Clock stop mode settings.

mcbspSpiFreq Frequency of the clock when working in SPI mode

srgSetup Sample rate generator setup.

pscPwrmEnable option to enable/disable the power management
support in the driver

pllDomain Pll domain where the McBSP device is connected to.

15.7.2 Mcbsp_ChanParams

Members Description
wordWidth word width size to be configured.
userLoopJobBuffer Pointer to user supplied loop job buffer
userLoopJobLength User supplied buffer length.
gblCbk global error call back function to be called in case of

an error.
edmaHandle Handle to the EDMA driver
hwiNumber HWI number to be enabled for this McBSP instance
dataFormat Format of the data buffer supplied by the application
enableHwFifo Whether the hardware FIFO is to be enabled or

disabled.
chanConfig configuration for the channel to be created
clkSetup Clock setup for the channel.

Page 156 of 234

C6748 BIOS PSP User Guide

multiChanCtrl Multi channel control settings.(if required)
chanEnableMask Channel enable/disable mask

15.8 CACHE Control
McBSP could be configured to FLUSH/INVALIADTE the application supplied buffers
while creating the drivers with configuration parameter Mcbsp_Params.enablecache
= TRUE/FALSE. When set to TRUE, for every request the data buffer is
FLUSHED/INVALIDATED. One could improve the latency of SIO_submit () call by
providing pre-flushed/pre-invalidate data and disabling the cache option.

15.9 Control Commands
Following table describes some of important the control commands, for a
comprehensive list please refer the IOCTL defined in Mcbsp.h.

Please note that the control commands will be supported only on the basis of the
operational mode of the driver(loop job or non loop job mode).

Command Parameter Description

Mcbsp_Ioctl_START NULL Starts the
requested (TX or
RX) section.

Mcbsp_Ioctl_STOP NULL Stops the requested
(TX or RX) section.

Mcbsp_Ioctl_MUTE_ON NULL Mutes the TX
channel

Mcbsp_Ioctl_MUTE_OFF NULL Un-Mutes the TX
channel

Mcbsp_Ioctl_PAUSE NULL Pauses the selected
section (channel)

Mcbsp_Ioctl_RESUME NULL Resumes a
previously paused
channel.

Mcbsp_Ioctl_CHAN_RESET NULL Resets the
requested channel.

Mcbsp_Ioctl_DEVICE_RESET NULL Resets the entire
device.

Mcbsp_Ioctl_SRGR_START NULL starts the sample
rate generator

Mcbsp_Ioctl_SRGR_STOP NULL Stops the sample
rate generator

Page 157 of 234

C6748 BIOS PSP User Guide

Mcbsp_Ioctl_FSGR_START NULL starts the frame
sync generator

Mcbsp_Ioctl_FSGR_STOP NULL stops the frame
sync generator

15.10 Use of McBSP driver through SIO APIs
Following sections explain the use of parameters of SIO calls in the context of McBSP
driver. Note that no effort is made to document the use of SIO calls; any McBSP
specific requirements are covered below.

15.10.1 SIO_create

15.10.2 S
I
O_ctrl

15.10.3 SIO_issue

Parameter
Number

Parameter Specifics to PSP

1 Device Name string Unique identifier used to identify this driver.
Please note the name should be same as
specified while creating the driver. (Either
through TCF or DEV_createDevice)

2 IO Type Should be “IOM_INPUT” when McBSP
requires to received data and “IOM_OUTPUT”
when McBSP requires to transmit

3 bufSize Stream buffer size

4 SIO_Attrs * Parameters required for the creation of the
SIO (e.g. channel parameters)

Parameter
Number

Parameter Specifics to PSP

1 SIO_Handle Handle returned by SIO_create

2 Command IOCTL command defined by McBSP driver

3 Arguments Misc arguments if required by the command

Parameter
Number

Parameter Specifics to PSP

1 channel Handle Handle returned by SIO_create

2 Pointer to buffer Should be pointer to the buffer that holds
the data.

3 arg User argument

4 Size Size of the transaction

Page 158 of 234

C6748 BIOS PSP User Guide

15.10.4 SIO_reclaim

Parameter
Number

Parameter Specifics to PSP

1 channel Handle Handle returned by SIO_create

2 Pointer to buffer Should be pointer to variable that holds the
data.

3 Pointer to arg User argument

15.11 Porting Guide
This section describes the major changes that would be required to port the McBSP
driver from DS/BIOS™ operating system to a different operating system.

The McBSP Device Driver is based upon the DSP BIOS IOM interface. The driver is
tightly coupled with the DSP BIOS operating system.

15.12 Sources that need re-targeting

15.12.1 ti/pspiom/cslr/soc_C6748.h (soc specific header file):

This file contains target (SoC) specific definitions. In most cases, changing the values
for the SoC specific details done here should suffice. However, if there are major
changes in the hardware instance then the driver file may be needed to change.

15.13 EDMA3 Dependency
Mcbsp driver relies on PSP EDMA3 driver to move data from/to application buffers to
peripheral; typically PSP EDMA3 driver is PSP deliverable unless mentioned
otherwise. Please refer to the release notes that came with this release. Please
ensure that current PSP release is compliant with version of EDMA3 driver being
used.

15.13.1 Used Paramset of EDMA 3

McBSP driver uses TWO link paramsets of EDMA3; if there are no paramsets
available the McBSP driver creation would fail. These paramsets are used through
the life time of McBSP driver.

15.14 Known Issues
1. The audio data support for the McBSP driver is not tested as the EVM does not

have the support for the same.

2. Please refer to the top level release notes that came with this release.

15.15 Limitations
For the limitations please refer to the top level release notes that came with this
release

15.16 Mcbsp Sample application

15.16.1.1 Description:

This sample demonstrates the use of the Mcbsp driver in EVM to EVM communication
mode. Mcbsp driver supports only DMA mode of operation.

Page 159 of 234

C6748 BIOS PSP User Guide

The Mcbsp sample application has two projects

1. Master mode project

2. Slave mode project.

Master mode sample application is used to configure one of the EVM as master i.e. it
supplies all the required clocks, while the slave mode sample application takes the
clocks from an external device.

The driver along with the required component modules are configured statically in
mcbspSample.tcf file. The required task for the test application and the memory for
the heap are also created here.

The mcbspSample.tcf file contains the remaining BIOS configuration like the
configuration of the event combiner etc. This helps to map the Mcbsp events to the
CPU interrupts.

The “mcbspDemoTask() task exercises the Mcbsp driver. It uses Stream APIS to
create mcbsp driver channels and also to perform the IO operations.

15.16.1.2 Build:

 This sample can be built using the CCS3 interface or the CCS4 interface

IMPORTANT NOTE: The sample application project contains the references to
%EDMA3LLD_BIOS5_INSTALLDIR% environment variable and links with edma3
libraries. This is required because driver by default requires that the EDMA be
present.

Please refer to the “Integration Guide” section for more details about building the
project.

15.16.1.3 Setup:

You need to connect two EVMs with the McBSP instance 1 on one EVM connected to
the McBSP instance 1 on the other EVM. The other settings are as described below.

1. The S7 jumper switch number “2” should be “ON” for both the EVMs.

2. The connections for the EVM to EVM are as follows. Refer to the
schematics for the PIN number references.

Master Slave

CLKX1(65) CLKR1(17)

CLKR1(17) CLKX1(65)

DX1(61) DR1(23)

FSX1(23) FSR1(13)

FSR1(13) FSX163)

GND(59) GND(59)

15.16.1.4 Output:

The sample on the slave side is loaded and executed first. Next the sample
application on the master side is loaded and executed. The following output will be
observed on both the master and slave sides once the application has completed
successfully.
EDMA intialised

Mcbsp driver primed.

Sample Application completed sucessfully...

Page 160 of 234

C6748 BIOS PSP User Guide

16 SATA driver

16.1 Introduction
This section is the reference guide for the SATA device driver which explains the
features and tips to use the same.

DSP/BIOS applications use this driver typically through PSP APIs provided by SATA
package. The following sections describe in detail, procedures to use this driver and
configure it.

16.1.1 Key Features of SATA subsystem

The AHCI compliance SATA Subsystem provides the following features.
 Serial ATA 1.5Gbps and 3Gbps speeds [2]
 Integrated TI SERDES
 Integrated Rx and Tx data buffers
 Supports all SATA power management features
 Internal DMA Engine
 Support one SATA port, hence only one SATA device can be connected.

16.1.2 Features support by driver

 Support ATA/ATAPI protocol

 PWRM Power Management

o IO based Power Management is supported by driver. Whenever there
is no SATA I/O request is pending the SATA Clock is disabled and
enabled before start of any IO.

o Supports PWRM. The PWRM modes supported are

 DVFS

 Standby

 Sleep

 DeepSleep

16.1.3 Features Not support by driver

 Port Multiplier support.

 CD/DVD - ATAPI support

 SATA as removable media

 Native command Queueing

16.2 Installation
The SATA device driver is a part of PSP product for C6748 and would be installed as
part of product installation.

16.2.1 SATA Component folder

On installation of PSP package for the C6748, the SATA driver can be found at <ID>\
ti\pspiom\sata\

Page 161 of 234

C6748 BIOS PSP User Guide

As shown above, the sata folder contains several sub-folders, the contents of which
are described below:

 sata - The sata folder is the place holder for the entire sata driver. This folder
contains psp_sata.h, psp_ata_med.h which is the header file included by the
application.

 build – contains CCS 3.3 / CCS 4 project file to build sata library.

 docs – Contains sata driver design document.

 lib – Contains sata libraries

 src – Contains sata driver’s source code.

16.2.2 SATA Dependent components

SATA depends on blkmedia component of BIOSPSP.

16.2.3 Build Options

The SATA library can be built using the CCS v3.3 project file located at
<ID>\packages\ti\pspiom\sata\build\C6748\ccs3\sata.pjt. This project file supports
the following build configurations.

Debug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” and “-DBIOS_PWRM_ENABLE” to build library for
C6748 soc.

Release:

 “-o3 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” and “-DBIOS_PWRM_ENABLE” to build library for
C6748 soc.

16.2.3.1 Required and Optional Pre-defined symbols

The sata library must be built with a soc specific pre-defined symbol.

“-DCHIP_C6748” is used above to build for C6748. Internally this define is used
to select a soc specific header file (soc_C6748.h). This header file contains
information such as base addresses of sata ahci controller, their event numbers,
etc.
 “-DBIOS_PWRM_ENABLE” this option will enable PWRM module for power
management of the driver. By default this option is enabled by the driver.

16.2.4 Power Management Configuration

The power management for SATA can be disabled by setting sata configuration
parameter to Sata Driver initialization routine. Int32 PSP_sataDrvInit(Uint32 inst_id,
PlatformResource *platform_res) defined in psp_sata.h. Note that the
platform_resource variable of type PlatformResource passed to PSP_sataDrvInit()
function should be declared as global variable.

The PlatformResource configuration structure definition is

typedef struct{

Page 162 of 234

C6748 BIOS PSP User Guide

Uint32 numRes;

PlatformRes_t res[SATA_CONFIG_MAX_NUM_AHCI_HOST];

Uint32 pscPwrmEnable; // (1 – enable power management, 0 – disable
power management)

}PlatformResource;

To enable Power management feature : set one to the pscPwrmEnable member
of Sata PlatformResource structure while calling PSP_sataDrvInit() call during
initialization. The power management can be controlled by either through PWRM
module or through PSC module. To enable PWRM Power management control define
BIOS_PWRM_ENABLE option while compiling SATA library. To use PSC controller
power management don’t define the BIOS_PWRM_ENABLE.

To disable Power management feature: set zero to the pscPwrmEnable member
of Sata PlatformResource structure while calling PSP_sataDrvInit() call during
initialization. This will disable the power management feature for SATA driver.

16.3 SATA Sample applications
The SATA sample application is not provided as part of BIOSPSP release. Please refer
to File system package application example.

Note : While linking the sata library with the application, the user need to create a
PRD objects PRD0 and PRD1 in the .tcf associated with SATA application. Please
include the following statement in the tcf file.

bios.PRD.create("PRD0");

bios.PRD.instance("PRD0").order = 1;

bios.PRD.instance("PRD0").comment = "sata timer0 ";

bios.PRD.instance("PRD0").period = 1000;

bios.PRD.instance("PRD0").mode = "one-shot";

bios.PRD.instance("PRD0").fxn = prog.extern("_sataTimer0_task", "asm");

bios.PRD.create("PRD1");

bios.PRD.instance("PRD1").order = 2;

bios.PRD.instance("PRD1").comment = "sata timer1 task";

bios.PRD.instance("PRD1").period = 1000;

bios.PRD.instance("PRD1").mode = "one-shot";

bios.PRD.instance("PRD1").fxn = prog.extern("_sataTimer1_task", "asm");

bios.PRD.create("PRD2");

bios.PRD.instance("PRD2").order = 2;

bios.PRD.instance("PRD2").comment = "sata timer2 task";

bios.PRD.instance("PRD2").period = 1000;

bios.PRD.instance("PRD2").mode = "one-shot";

bios.PRD.instance("PRD2").fxn = prog.extern("_sataTimer2_task", "asm");

bios.PRD.create("PRD3");

bios.PRD.instance("PRD3").order = 2;

bios.PRD.instance("PRD3").comment = "ata pwrm task";

Page 163 of 234

C6748 BIOS PSP User Guide

bios.PRD.instance("PRD3").period = 100;

bios.PRD.instance("PRD3").mode = "one-shot";

bios.PRD.instance("PRD3").fxn = prog.extern("_ataPwrmTask", "asm");

16.4 Known Issues
Please refer to the top level release notes that came with this release.

16.5 Limitations
Please refer to the top level release notes that came with this release.

Page 164 of 234

C6748 BIOS PSP User Guide

17 VPIF driver

17.1 Introduction
This document is the reference guide for Vpif device driver explaining the features
and guidelines for using the driver.

DSP/BIOS™ applications use the driver typically through FVID APIs to perform frame
video capture and display. FVID was implemented as a simple wrapper on top of the
GIO class driver and provides an application-specific interface that has been
customized for frame video. For more information on the DSP/BIOS™ device driver
model and the GIO class driver, refer to the references section of this document.

The following sections describe in detail, the procedures how to configure and use
the driver. It is recommended to go through the sample application to get familiar
with initializing and using the Vpif driver.

17.1.1 Key Features

 Supports Multiple VPIF channels (2 capture and 2 display channels are
supported on C6748 EVM)

 Supports dual channel 8-bit BT.656 capture and single channel 8, 10 or 12-bit
RAW capture.

 Supports dual channel 8-bit BT.656 display.

 External Device Control Interface using EDC driver for seamless integration
with different video encoder or decoder devices

 Supports flipping/exchange of multiple frame buffers for seamless capture
and display operation

 Easy to maintain & re-target to new platforms

Features supported and verified on EVM:

 SD capture using channel 0 with input interface as Composite

 SD capture using channel 1 with input interface as S-video

 RAW capture using channel 0 with MT9T001 sensor

 SD display using channel 2 with input interfaces as either Composite or S-
video but not both at the same time.

 Slice VBI capture and display using Closed Caption service for NTSC.

Features supported but not tested on EVM due to H/W limitation:

 SD display using channel 3

 HD capture

 HD display

 RAW VBI capture/display

 RAW HBI capture/display

Features which are not supported:

 RAW display

 ED capture and display

 Simultaneous RAW and SD capture

Page 165 of 234

C6748 BIOS PSP User Guide

17.1.2 Terms and Abbreviations

Term Description

 This bullet indicates important information.

Please read such text carefully.

 This bullet indicates additional information.

API Application Programmer’s Interface

CC Closed Caption

CGMS Copy generation management system

CSL TI Chip Support Library – primitive h/w abstraction

EDC External Device Control

HD High Definition

IOM Input / Output Module

IP Intellectual Property

ISR Interrupt Service Routine

C6748 TI’s digital multi-media processor with C674x core

OS Operating System

SD Standard definition

SOC System on chip

VPIF Video Port Interface

WSS Wide screen signaling

17.1.3 References

1. spru403o.pdf DSP/BIOS™ Driver Developer’s Guide

2. BIOSPSP_VPIF_Dri
ver_Design.doc

VPIF design document

3. sprugj9.pdf VPIF H/W Controller

4. BIOSPSP_vpif.chm VPIF chm

5. BIOSPSP_vpifedc.c
hm

VPIF Edc chm

17.2 Installation
The Vpif device driver is a part of PSP product for C6748 and would be installed as
part of product installation.

17.2.1 PSP Component folder

On installation of the PSP package for C6748, the Vpif driver can be found at
<ProjectDir>\ti\pspiom\vpif

Page 166 of 234

C6748 BIOS PSP User Guide

As shown above the vpif folder contains several sub-folders, the contents of which
are described below:

 vpif – This top level vpif folder is the place holder for the entire Vpif driver.
This folder contains Vpif.h, Edc.h and Fvid.h, the header files included by
the application.

 build – This folder contains CCS 3.3 / CCS 4 VPIF driver library project file to
build Vpif library. The generated driver library shall be included in the
application where Vpif driver have to be used.

 docs – This folder contains design document and doxygen generated API
reference help file. Design document contains the driver details which can be
helpful for the developers as well as consumers to understand the driver
design.

 lib – This folder contains vpif libraries generated in all the configuration
modes (debug, idebug, irelease and release).

 src – This folder contains Vpif driver source files. It also contains header files
that are used by the driver.

17.2.2 EDC Component folder

On installation of the PSP package for C6748, the Edc driver can be found at
<ProjectDir>\pspiom\platforms\evmC6748\vpifedc

As shown above the EDC folder contains several sub-folders, the contents of which
are described below:

 vpifedc – This top level vpifedc folder is the place holder for the EDC driver.
This folder contains Adv7343.h, Mt9t001.h and Tvp5147.h, the header files
included by the application.

 build – This folder contains CCS 3.3 / CCS 4 EDC driver library project file to
build EDC library. The generated EDC driver library shall be included in the
application where EDC driver have to be used.

 docs – This folder contains the doxygen generated API reference help file.

 lib – This folder contains EDC libraries generated in all the configuration
modes (debug and release).

 src – This folder contains EDC driver source files. It also contains header files
that are used by the EDC driver. This contains the EDC source code for
TVP5147 decoder, MT9T001 sensor and ADV7343 encoder. Codec interface
related code is also present here.

Page 167 of 234

C6748 BIOS PSP User Guide

17.2.3 Build Options

The Vpif library can be built using the CCS v3.3 project file located at
<ProjectDir>\packages\ti\pspiom\vpif\build\C6748\ccs3\vpif.pjt. The EDC library can
be built using the CCS v3.3 project file located at
<ProjectDir>\packages\ti\pspiom\platforms\evm6748\vpifedc\build\ccs3\vpifedc.pjt.

The project file supports the following build configurations:

IMPORTANT NOTE:

Instrumentation code in iDebug and iRelease pjts is not implemented and is
for future implementation. They are same as Debug and Release pjts.

Debug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

iDebug:

 “-g –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

Release:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

iRelease:

 “-o2 –mo –mv6740” compile options used to build library.

 Defines “–DCHIP_C6748” to build library for C6748 soc.

 Defines -d"PSP_DISABLE_INPUT_PARAMETER_CHECK" -d"NDEBUG" to
eliminate parameter checking code and asserts in driver

17.2.3.1 Required and Optional Pre-defined symbols
This driver does not have any specific build option. The Vpif library must be built
with a soc specific pre-defined symbol.

“-DCHIP_C6748” is used above to build for EVM C6748. Internally this define is
used to select a soc specific header file (soc_C6748.h). This header file contains
information such as base addresses of VPIF device, its event numbers, etc.

The Vpif library can also be built with these optional pre-defined symbols.

Use -DPSP_DISABLE_INPUT_PARAMETER_CHECK when building library to turn
OFF parameter checking. This symbol is defined for Release and iRelease profiles
by default in the CCS 3.3 pjts provided.

Use -DNDEBUG when building library to turn off runtime asserts. This symbol is
defined for Release and iRelease profiles by default in the CCS 3.3 pjts provided.

17.3 Features
This section details the features of Vpif and how to use them in detail.

Page 168 of 234

C6748 BIOS PSP User Guide

17.3.1 Overview

Video Port Interface provides a flexible video input/output port which allows the
capture and display of digital video streams. This device driver is written in
conformance to the DSP/BIOS™ GIO model and handles communication to and from
the VPIF device. VPIF has its own internal DMA for data handling.

The following decoders are used for various types of captures:

 Two TVP5147 decoders are connected to both channels via BT.656 interface.
One TVP5147 decoder is connected to S-video input which provides BT.656
input to channel 1. The other TVP5147 decoder is connected to composite
input which provides BT.656 input to channel 0.

 External MT9T001 sensor is connected to both the channels for RAW data
capture.

The following encoder is used for various types of display:

 Single ADV7343 encoder for SD display. Encoder is connected to both S-video
output and composite output which provides BT.656 output for channel 2.

17.3.2 Driver Component

The Video driver is constituted of following sub components:

VPIF Driver – application interface, VPIF and DMA handling

EDC (External Device Control) Driver – Configures external Video Decoder and
Encoder. VPIF driver library calls EDC Driver APIs for external Decoder and Encoder
configurations.

The block diagram below shows the overall system architecture:

Figure 1. VPIF Driver Architecture

Vpif driver lies below the FVID and GIO layer. The driver uses the DSP BIOS™ APIs
for OS services. The main function of the Vpif driver is to program the peripherals,
for the display or capture configuration, to move the video data to and from SDRAM

FVID Layer

GIO Layer

VPIF Driver

VPIF

DSP/
BIOS

VPIF Application

Video
DriverEDC Drivers

I2C
H/W
Layer

Video Codecs

SOC

EVM

Page 169 of 234

C6748 BIOS PSP User Guide

to the VPIF interface. The Vpif driver actually captures and displays the video data.
The VPIF channel data format is selectable based on the settings of the specific
channel control register (Channels 0-3). The EDC drivers are used to configure the
encoders and decoders, using codec interface. The call to EDC drivers is always
through the Vpif layer.

All channels can be activated simultaneously for SD mode

 Channels 0 and 1 are prepared only for capture.

 Channels 2 and 3 are prepared only for display.

Display applications can access VPIF channel 2 and channel-3 through software
interfaces. Both the channels support SD display. Using EDC interface encoder is
configured. Display Driver supports the following standards:

 SD output display: NTSC 480i 30 fps and PAL 576i 25 fps.

Capture applications can access VPIF channel 0 and channel 1 through software
interfaces. Both the channels support SD capture but only channel-0 supports RAW
capture. Channel 0 and 1 are used simultaneously for raw video capture using sensor
device. Using EDC interface decoder and sensor is configured. Capture Driver
supports the following standards:

 Raw input capture

 SD input capture: NTSC 480i 30 fps and PAL 576i 25 fps

 This driver is not tested for HD because of Hardware constraints. However the
driver is designed keeping HD in mind.

The following figure shows the physical connections for TVP5147 decoders on EVM.

Figure 2. Physical input interface for SD on EVM

The following figure shows the physical connections for ADV7343 encoder on EVM.

Figure 3. Physical output interface for SD on EVM

17.3.3 Driver Capabilities

Following are some of the capabilities of VPIF driver:

1. The driver conforms to IOM model of DSP/BIOS™ operating system.

S-video SD

vdata_in_03

vdata_in_02

ADV7343
BT656

CVBS-SD

S-video SD

vdata_in_00

vdata_in_01

TVP5147
BT656

TVP5147 BT656

CVBS-SD

Page 170 of 234

C6748 BIOS PSP User Guide

2. For field mode, each IO request to the driver would require both fields’ data of
a frame. For capture, the driver completes the IO request once a frame is
captured or both the fields are captured. For display, the driver completes the
IO request once a frame is displayed or both the fields are displayed.

3. Supports dynamic switching among input interfaces and various resolutions
with some necessary restrictions wherever applicable.

4. The driver will expose 4 software channels. Two capture channel for each of
the hardware channel 0 and 1. Two software channels of display for each of
the display hardware channels 2 and 3. All the software channels will support
SD (BT656) mode but only channel 0 will support RAW capture.

5. The SD capture/display channel will support the following resolutions for BT
stream:

 NTSC 480i at 30fps

 PAL 576i at 25fps

6. Capture driver

 Always returns the most recent frame.

 Cycle through available buffers when application falls behind.

7. Display driver

 Queues buffers for displaying from application.

 Keep displaying the same frame when running out of buffers.

 Returns the IO request/buffer immediately after displaying the content
of that IO request, if an IO request is pending.

8. The decoder EDC driver will support runtime change of the following
parameters:

TVP5147: SD BRIGHTNESS, SD CONTRAST, SD SATURATION, SD HUE and
SD AUTOGAIN

9. The encoder EDC driver will support runtime change of the following
parameters:

ADV7343: SD BRIGHTNESS, SD HUE, and SD GAMMA.

10.Raw Ancillary data capture/display is supported by VPIF driver provided the
same is supported by encoder and decoder. This is not tested due to EVM
limitations.

11.VBI capture/display in the slice mode will be provided for closed caption, WSS
and CGMS. Decoder TVP5147 and encoder ADV7343, available on EVM, will
be used for this purpose.

12.VPIF driver will not allocate frame buffers for driver operations. Applications
have to create buffers for this purpose. The API's for buffer allocation will be
provided. It is recommended that applications should use the APIs provided
with driver for frame buffer allocation/de-allocation purpose.

13.Minimum three buffers are required to be queued inside the Vpif driver before
the driver is ready to start capture or display operation. A minimum of 3
frame buffers should be used for proper operation

17.3.4 Driver Limitations

Following are the constraints of the VPIF driver:

1. HD capture will not be supported.

Page 171 of 234

C6748 BIOS PSP User Guide

2. HD and RAW display will not be supported.

3. Simultaneous RAW and SD capture would not be supported by the driver.

4. Raw video capture will be supported provided EVM has support for same i.e.
there should be sensor (for e.g. external MT9T001 image sensor) to capture
RAW data.

5. As SD mode is supported by vpif driver, only SD parameters are configured in
the encoder and decoder.

6. Dynamic switching of resolution and dynamic switching of interfaces is not
supported when streaming is on.

7. VPIF input/output buffer addresses must be multiple of eight.

8. FVID_EXCHANGE mechanism should be used for exchanging pointers between
buffers.

9. Raw VBI and raw HBI is supported by the driver but not tested.

 This driver is not tested for HD because of Hardware constraints. However the
driver is designed keeping HD in mind.

17.3.5 Capture and / or display operation

Vpif driver can be simultaneously operated as a capture and or display. This could be
achieved by creating a channel as an INPUT channel and creating another channel as
an OUTPUT channel. The type of channel is specified while creating the channel
(using FVID_create() specify “IOM_OUTPUT” or “IOM_INPUT”).

Application can send the mode in which the channel should be opened by making
“dispStdMode” or “capStdMode” member of channel parameters as any of the
Vpif_VideoMode enum. The driver will look for this mode internally in the lookup
table and update the internal Vpif_ConfigParams structure. The “capVideoParams”
or “dispVideoParams” member of channel parameter should be NULL. Application
can also choose to send these parameters. If the “capVideoParams” or
“dispVideoParams” parameter is not NULL, driver will update the internal
Vpif_ConfigParams structure using the parameters given by application.

17.4 VPIF Configurations
This section discusses about the initialization details and structures used in the VPIF
driver. Please note that for some structure member information/details, the C6748
VPIF peripheral reference guide might need to be referred.

Most members of these structures directly reflect the VPIF register settings. The
driver does not check the validity of these parameters. It is the application’s
responsibility to pass proper value according to the VPIF register description. Please
refer VPIF Peripheral Reference Guide for more details.

Following section document some of the configurable parameter of Vpif. Please refer
to Vpif.h for complete configurations and explanations.

17.4.1 Initialization details

To use the capture or display channel of Vpif device driver, a device entry must be
added and configured in the DSP/BIOS configuration tool.

To have Vpif device driver included in the application, corresponding TCI file have to
be included in BIOS TCF i.e. “vpifSample.tci” must be included in BIOS TCF file of
the application for using VPIF instance 0 of the driver. This file can be found in vpif
sample application directory.

Page 172 of 234

C6748 BIOS PSP User Guide

The following are the device configuration settings required to use the vpif driver.

TCI Configuration Parameters Description

initFxn - Init Function Pointer to application function to initialize
C6748 VPIF and configure parameters like DMA
size and the HWI number. This will override
the default parameters inside the driver. VPIF
requires that the user call Vpif_init() as part of
this initFxn. Users can also directly hook in
Vpif_init().

fxnTable - Function Table Pointer Pointer to IOM function table. Vpif requires this
field to be Vpif_IOMFXNS. This is a global
variable which points to the VPIF driver APIs.

fxnTableType - Function Table Type IOM_Fxns.

deviceId - Device Id Specify which VPIF instance to use. For
example to use VPIF on C6748 this should be
given as 0.

params – Pointer to Port parameter A pointer to an object of type Vpif_Params as
defined in the header file Vpif.h. This pointer
will point to a device parameter structure. In
BIOS TCI files, this structure object is passed
as an argument. Application should declare
and initialize the structure object properly.

The vpif driver initialization in BIOS TCF looks like this:

bios.UDEV.create("VPIF0");

bios.UDEV.instance("VPIF0").fxnTableType = "IOM_Fxns";

bios.UDEV.instance("VPIF0").initFxn = prog.extern("userVpif0Init");

bios.UDEV.instance("VPIF0").params = prog.extern("vpifParams");

bios.UDEV.instance("VPIF0").fxnTable = prog.extern("Vpif_IOMFXNS");

bios.UDEV.instance("VPIF0").deviceId = 0x0;

Apart from the VPIF driver initialization, I2C driver should also be initialized in the
BIOS TCF file. For details on how to initialize I2C driver, refer I2C driver user guide
and/or the sample application provided with the package.

17.4.2 Constants & Enumerations

17.4.2.1 Define for Vbi service

/* VBI Ancillary Data service: NONE. No Ancillary Data is required */

#define Vpif_VbiServiceType_NONE 0x0

/* VBI Ancillary Data service: Horizontal Ancillary (HANC) - Data between EAV
and SAV (horizontal blanking interval) */

#define Vpif_VbiServiceType_HBI 0x1u

/* VBI Ancillary Data service: Vertical Ancillary (VANC) - Data between SAV
and EAV (horizontal active video area). */

#define Vpif_VbiServiceType_RAW_VBI 0x2u

Page 173 of 234

C6748 BIOS PSP User Guide

/* VBI Ancillary Data service: Specific Ancillary Data. ancillary data that
is not video image data but is VBI data. */

#define Vpif_VbiServiceType_SLICE_VBI 0x4u

These are defined for different VBI services supported by VPIF. A valid value for this
for a particular channel operation should be passed to channel parameters in the
“vbiService” field.

17.4.2.2 Vpif_IOCTL

typedef enum Vpif_IOCTL_t

{

 Vpif_IOCTL_CMD_START,

 /**< Start the VPIF channel operation. */

 Vpif_IOCTL_CMD_STOP,

 /**< Stop the VPIF channel operation. */

 Vpif_IOCTL_CMD_GET_NUM_IORQST_PENDING,

 /**< Get number of pending I/O requests in the driver queue. */

 Vpif_IOCTL_CMD_GET_CHANNEL_STD_INFO,

 /**< Get the current configuration parameters of driver. */

 Vpif_IOCTL_CMD_CHANGE_RESOLUTION,

 /**< Change the current resolution of the channel. */

 Vpif_IOCTL_CMD_MAX

 /**< Book-keep - Max ioctl's */

}Vpif_IOCTL;

This enum defines the different IOCTL commands used to perform control operation
on VPIF. They are common for both capture and display operation. The IOCTL
command is passed as second argument in vpifMdControlChan() function when the
driver is used directly with the application. These commands are explained in detail
during FVID_control() function explanation.

17.4.2.3 Vpif_SdramStorage

typedef enum Vpif_SdramStorage_t

{

 Vpif_SdramStorage_FIELD = 0,

 /**< VPIF field format storage: field 1 and field 2 will be stored

 * separately.*/

 Vpif_SdramStorage_FRAME

 /**< VPIF frame format storage: field 1 and field 2 will be stored in

 * merged pattern i.e. one line of field 1, one line of field 2.

Page 174 of 234

C6748 BIOS PSP User Guide

 * CAUTION: For Progressive mode SDRAM storage should be Frame ONLY.*/

}Vpif_SdramStorage;

This enum defines the different storage modes of operation. Progressive video must
use the frame storage mode, but interlaced video can use either field or frame
storage modes.

17.4.2.4 Vpif_VideoMode

typedef enum Vpif_VideoMode_t

{

 Vpif_VideoMode_NONE = 0,

 /**< VPIF operation mode: NONE. Used when user wants to send thedifferent

 * video parameters and do not want to use internal look-up table.*/

 Vpif_VideoMode_NTSC,

 /**< VPIF operation mode: NTSC - 480 I Video Standard*/

 Vpif_VideoMode_PAL,

 /**< VPIF operation mode: PAL - 576 I Video Standard*/

 Vpif_VideoMode_RAW_VGA,

 /**< VPIF operation mode: Raw Mode - Bayer Pattern GrRBGb only*/

 Vpif_VideoMode_RAW_SVGA,

 /**< VPIF operation mode: Raw Mode - Bayer Pattern GrRBGb only*/

 Vpif_VideoMode_RAW_XGA,

 /**< VPIF operation mode: Raw Mode - Bayer Pattern GrRBGb only*/

 Vpif_VideoMode_RAW_SXGA,

 /**< VPIF operation mode: Raw Mode - Bayer Pattern GrRBGb only*/

 Vpif_VideoMode_RAW_UXGA,

 /**< VPIF operation mode: Raw Mode - Bayer Pattern GrRBGb only*/

 Vpif_VideoMode_RAW_QXGA,

 /**< VPIF operation mode: Raw Mode - Bayer Pattern GrRBGb only*/

 Vpif_VideoMode_RAW_480P,

 /**< VPIF operation mode: Raw Mode - Bayer Pattern GrRBGb only*/

 Vpif_VideoMode_RAW_576P,

 /**< VPIF operation mode: Raw Mode - Bayer Pattern GrRBGb only*/

 Vpif_VideoMode_RAW_720P,

 /**< VPIF operation mode: Raw Mode - Bayer Pattern GrRBGb only*/

 Vpif_VideoMode_RAW_1080P

Page 175 of 234

C6748 BIOS PSP User Guide

 /**< VPIF operation mode: Raw Mode - Bayer Pattern GrRBGb only*/

}Vpif_VideoMode;

This enum defines the different video modes of operation.

 Some of the RAW mode may or may not apply, and will depend on the type of
image sensor used.

17.4.2.5 Vpif_RawCapturePinPol

typedef enum Vpif_RawCapturePinPol_t

{

 Vpif_RawCapturePinPol_SAME = 0,

 /**< No inversion. */

 Vpif_RawCapturePinPol_INVERT

 /**< Invert incoming signal inside the VPIF. */

}Vpif_RawCapturePinPol;

This enum defines the polarity of external control signal for raw capture.

17.4.2.6 Vpif_RawCaptureDataWidth

typedef enum Vpif_RawCaptureDataWidth_t

{

 Vpif_RawCaptureDataWidth_8BITS = 0,

 /**< 8 bits/pixel */

 Vpif_RawCaptureDataWidth_10BITS,

 /**< 10 bits/pixel */

 Vpif_RawCaptureDataWidth_12BITS

 /**< 12 bits/pixel */

}Vpif_RawCaptureDataWidth;

This enum defines the data width for the raw capture mode.

17.4.2.7 Vpif_DmaReqSize

typedef enum Vpif_DmaReqSize_t

{

 Vpif_DmaReqSize_32BYTE,

 /**< Request size of 32 bytes */

 Vpif_DmaReqSize_64BYTE,

 /**< Request size of 64 bytes */

 Vpif_DmaReqSize_128BYTE,

 /**< Request size of 128 bytes */

Page 176 of 234

C6748 BIOS PSP User Guide

 Vpif_DmaReqSize_256BYTE

 /**< Request size of 256 bytes */

}Vpif_DmaReqSize;

This enum defines the request size settings for DMA transfer.

17.4.2.8 Vpif_FrameFormat

typedef enum Vpif_FrameFormat_t

{

 Vpif_FrameFormat_INTERLACED,

 /**< Interlaced frame format */

 Vpif_FrameFormat_PROGRESSIVE

 /**< Progressive frame format */

}Vpif_FrameFormat;

This enum keeps track of kind of the frame format. VPIF supports both interlaced
and progressive video formats.

17.4.2.9 Vpif_YCMuxed

typedef enum Vpif_YCMuxed_t

{

 Vpif_YCMuxed_NO,

 /**< For BT.656 video, luminance (Y) and chrominance (C) values are

 * multiplexed into a single byte-stream on one channel. */

 Vpif_YCMuxed_YES

 /**< For BT.1120 video, channels function as a pair without Y/C

 * multiplexing. */

}Vpif_YCMuxed;

This enum keeps track of Y/C streams are muxed or not.

17.4.2.10 Vpif_CaptureFormat

typedef enum Vpif_CaptureFormat_t

{

 Vpif_CaptureFormat_BT,

 /**< BT.xxx The BT/YC video mode will look for video sync signals that

 * are embedded within the video byte stream (standard for BT video).*/

 Vpif_CaptureFormat_CCDC

 /**< The CCD/CMOS (Raw Data Capture) mode will look for video syncsignals

 * on the dedicated VPIF sync pins (common for CCD and CMOS sensors).*/

Page 177 of 234

C6748 BIOS PSP User Guide

}Vpif_CaptureFormat;

This enum keeps track of capture format.

17.4.2.11 Vpif_IoMode

typedef enum Vpif_IoMode_t

{

 Vpif_IoMode_NONE,

 /**< No operation selected */

 Vpif_IoMode_RAW_CAP,

 /**< Raw mode of Capture */

 Vpif_IoMode_CAP,

 /**< BT mode of Capture */

 Vpif_IoMode_DIS

 /**< Display mode of operation */

}Vpif_IoMode;

This enum defines the mode for channel operation. When a channel is opened, this
enum defines the IO mode for which the channel is opened.

 For display operation “mode” parameter passed to FVID_create() is
IOM_OUTPUT and, only Vpif_IoMode_DIS is the I/O mode supported. For
capture operation “mode” parameter passed to FVID_create() is IOM_INPUT
and the channel I/O mode can be BT capture or RAW capture decided by
Vpif_IoMode_CAP and Vpif_IoMode_RAW_CAP respectively, passed by
application.

17.4.2.12 Vpif_PllDomain

typedef enum Vpif_PllDomain_t

{

 Vpif_PllDomain_0 = 0,

 /**< PLL domain 0 */

 Vpif_PllDomain_1 = 1

 /**< PLL domain 1 */

}Vpif_PllDomain;

This enum keeps track of the PLL domain where the VPIF device lies.

17.4.3 Data Structures

17.4.3.1 Vpif_RawVbiParams

“Vpif.h” file contains Vpif_RawVbiParams data structure, which is a part of
Vpif_ConfigParams structure. This structure will store vpif parameters for raw

Page 178 of 234

C6748 BIOS PSP User Guide

vbi/hbi data for capture/display. This is used to calculate the size of raw vbi and raw
hbi buffers. The members of this structure are explained below:

Structure Members Description
samplePerLine Byte count of valid data within the ancillary blanking

region.
countFld0 Line count of valid top field ancillary data.
countFld1 Line count of valid bottom field ancillary data.

17.4.3.2 Vpif_RawSelectiveVbiParams

“Vpif.h” file contains Vpif_RawSelectiveVbiParams data structure, which is a part
of Vpif_DisChanParams structure. This structure will store vpif parameters for raw
vbi/hbi data when VPIF SELECTIVELY wants to display sub-regions in the VBI
space. The VPIF can selectively transmit sub-regions in the VBI space but cannot
selectively receive sub-regions in the VBI space.

 Note that the user is expected to place valid ancillary data in a memory buffer
that is representative of the entire VBI region of interest. However, only the
valid ancillary data region needs to be initialized -- the VPIF will automatically
transmit blanking data (Y=10h, C=80h) for non-valid ancillary data regions.

The members of this structure are explained below:

Structure Members Description
vbi0StrtHps Horizontal start of vbi data for first field. Horizontal

position (byte-count) of valid data within the top field
horizontal ancillary blanking region. Byte positions are
enumerated beginning with 0. The value of HPOS must be
a multiple of 8.

vbi0StrtVps Vertical start of vbi data for first field. Vertical position
(line-count) of valid data within the top field horizontal
ancillary blanking region. Line positions are enumerated
beginning with 1.

vbi0Hsz Horizontal size of vbi data for first field. Horizontal size
(byte-count) of valid top field horizontal ancillary data
beginning at vbi0StrtHps. The value of HSIZE must be a
multiple of 8.

vbi0Vsz Vertical size of vbi data for first field. Vertical size (line-
count) of valid top field horizontal ancillary data beginning
at vbi0StrtVps.

vbi1StrtHps Horizontal start of vbi data for second field. Horizontal
position (byte-count) of valid data within the bottom field
horizontal ancillary blanking region. Byte positions are
enumerated beginning with 0. The value of HPOS must be
a multiple of 8.

vbi1StrtVps Vertical start of vbi data for second field. Vertical position
(line-count) of valid data within the bottom field horizontal
ancillary blanking region. Line positions are enumerated
beginning with 1.

vbi1Hsz Horizontal size of vbi data for second field. Horizontal size

Page 179 of 234

C6748 BIOS PSP User Guide

(byte-count) of valid bottom field horizontal ancillary data
beginning at vbi1StrtHps. The value of HSIZE must be a
multiple of 8.

vbi1Vsz Vertical size of vbi data for second field. Vertical size (line-
count) of valid bottom field horizontal ancillary data
beginning at vbi1StrtVps.

17.4.3.3 Vpif_ConfigParams

“Vpif.h” file contains Vpif_ConfigParams data structure that is passed as a part of
channel parameters - Vpif_CapChanParams and Vpif_DisChanParams. Most
members of this structure directly reflect the VPIF register settings. The members of
this structure are explained below:

Structure Members Description
mode Video Standard mode. Video mode defined by enum

Vpif_VideoMode. If the mode is not defined in enum
Vpif_VideoMode, “mode” should be Vpif_VideoMode_NONE.

width Indicates width of the image for this mode
height Indicates height of the image for this mode. Active lines.
fps Indicates frames per sec for this mode. This member is not

used by Vpif internally and is for information purpose.
frameFmt Indicates whether this is interlaced or progressive format.

This value should be Vpif_FrameFormat_INTERLACED or
Vpif_FrameFormat_PROGRESSIVE depending on required
operation.

ycMuxMode Indicates whether this mode requires single or two
channels. This value should be Vpif_YCMuxed_NO or
Vpif_YCMuxed_YES depending on required operation.

eav2sav The number of bytes in the inactive (EAV2SAV) video
regions. The EAV2SAV value must be even.

sav2eav The number of bytes in the active (SAV2EAV) video
regions. The SAV2EAV value must be even.

l1 Enumerated line number for the L1 field position.
l3 Enumerated line number for the L3 field position.
l5 Enumerated line number for the L5 field position.
l7 Enumerated line number for the L7 field position. Note that

L7 is not used with the progressive video mode.
l9 Enumerated line number for the L9 field position. Note that

L9 is not used with the progressive video mode.
l11 Enumerated line number for the L11 field position. Note

that L11 is not used with the progressive video mode.
vsize Vertical size of the image. Actual lines.
captureFormat Indicates whether capture format is in BT or in CCD/CMOS.

This value should be Vpif_CaptureFormat_BT or

Page 180 of 234

C6748 BIOS PSP User Guide

Vpif_CaptureFormat_CCDC depending on required
operation.

isVbiSupported Indicates whether this mode supports capturing vbi or not.
Boolean:

TRUE = VBI mode is supported by this video mode.

FALSE = VBI mode is not supported by this video mode.
isHd Indicates whether this mode is HD or not.

Boolean:

TRUE = HD mode.

FALSE = not HD mode.

Kept for future use.
hancOffset Offset for the horizontal ancillary data.
rawHbiParams Raw non selective HBI params.

rawVbiParams Raw non selective VBI params.

 For CCDC format many of the members are not used. Please refer to the VPIF
peripheral reference guide for detail. Following is an example:

/* RAW parameters for VGA mode */

Vpif_ConfigParams rawParamEx = {Vpif_VideoMode_RAW_VGA, 640, 480,
93, Vpif_FrameFormat_PROGRESSIVE, Vpif_YCMuxed_NO, 0, 0, 0, 0, 0, 0, 0,
0, 0, Vpif_CaptureFormat_CCDC, FALSE, FALSE, 0, {0, 0, 0}, {0, 0, 0}};

 “hancOffset”, “rawHbiParams”, “rawVbiParams” are valid only if vbi is
supported by the video mode and isVbiSupported is set to TRUE.

 The driver does not checks the validity of individual parameters

17.4.3.4 Vpif_StdInfo

“Vpif.h” file contains Vpif_StdInfo data structure that is passed while
Vpif_IOCTL_CMD_GET_CHANNEL_STD_INFO call. The members of this structure are
explained below:

Structure Members Description
stdMode Current video mode of driver. Video mode defined by enum

Vpif_VideoMode.

activePixels Same as bytes per line or width
activeLines Same as height
framePerSec Frames per second
stdFrameFormat Frame format – Interlaced or Progressive
stdVbiService Indicates what all VBI services supported by this mode.

Available values for this field are defined in "Vpif.h" file
with VPIF VBI Ancillary Data service title.

sdramStorage SDRAM storage mode. This value should be
Vpif_SdramStorage_FIELD or Vpif_SdramStorage_FRAME

Page 181 of 234

C6748 BIOS PSP User Guide

depending on required operation.

17.4.3.5 Vpif_FrameBufferParams

“Vpif.h” file contains Vpif_FrameBufferParams data structure that is passed as a
part of channel parameters - Vpif_CapChanParams and Vpif_DisChanParams. This
structure tells about the alignment of frame buffer and the segment id from which
the buffers will be allocated. The members of this structure are explained below:

Structure Members Description
frmBufAlignment Frame buffer alignment used by driver while allocating

memory for video frame buffer
frmBufSegId Memory segment ID, used by driver to allocate video

frame buffer

17.4.3.6 Vpif_CapChanParams

“Vpif.h” file contains Vpif_CapChanParams data structure that is passed while
FVID_create() call. Applications could use this structure to configure the channel
specific configurations. Most members of this structure directly reflect the VPIF
register settings. The driver does not check the validity of these parameters
(Example videoParams, dataSize etc). Please refer VPIF peripheral reference guide
for more details. The members of this structure are explained below:

Structure Members Description
capStdMode Operation mode title. Video mode defined by enum

Vpif_VideoMode. If the value of this mode is
Vpif_VideoMode_NONE, it suggests that user do not want
to use internal lookup table for video parameters.

capChannelIoMode Operation mode for which the channel is opened. Channel
IO mode is defined by enum Vpif_IoMode.

capFbParams Frame buffer settings defined by Vpif_FrameBufferParams

capStorageMode Indicates whether it is field or frame based storage mode.
This is only applicable for interlaced mode of operation.

*capEdcTbl Function table of decoder module for the channel. A
statically defined EDC function table is passed to the
vpifMdCreateChan() function via the channel parameters
argument. Refer to External Device Control section for
details.

*capVideoParams Specify the Video parameters if application would like to
specify them. This is an optional parameter. If not used,
set this element to NULL. If set to NULL, the driver will
read the video parameters depending upon the
“capStdMode” set. If it is not NULL, its value will prevail
over whatever mode being set. In this case the mode
parameter in “capVideoParams” should be
Vpif_VideoMode_NONE. CAUTION: If wrong parameters are
sent, the driver does not verify the validity of these
parameters

capVbiService Indicates what type VBI services are required by this

Page 182 of 234

C6748 BIOS PSP User Guide

mode. Available values for this field are defined in
"Vpif.h" file with VPIF VBI Ancillary Data service title.

capVbiSliceService If the VBI type is Slice VBI then what kind of service it is.
Valid only if one of the “capVbiService” is set as
Vpif_VbiServiceType_SLICE_VBI. Whatever slice service
is set here only that data is captured. Available values for
this field are defined in "Fvid.h" file with FVID Slice VBI
service type title.

capDataSize The data width bit is only used with the CCD/CMOS data
capture mode. Data size defined by enum
Vpif_RawCaptureDataWidth.

capFieldPol Field ID polarity inverting control. This value should be
Vpif_RawCapturePinPol_SAME or
Vpif_RawCapturePinPol_INVERT depending on required
operation.

capVPixPol Vertical pixel valid signal polarity control. Same as
“capFieldPol”.

capHPixPol Horizontal pixel valid signal polarity control. Same as
“capFieldPol”.

 “capDataSize”, “capFieldPol”, “capVPixPol”, “capHPixPol” are only valid
for RAW capture mode they are not valid for BT mode.

 “capVbiService”, “capVbiSliceService” are only valid for BT capture they
are not valid for RAW capture mode. Ancillary data is only supported for BT
byte streams.

 If “capEdcTbl” is passed as NULL, the driver will not throw any error and it is
assumed that there is no EDC available for that channel.

 Setting “capStdMode” as Vpif_VideoMode_NONE and “videoParams” as NULL
in channel parameters will results in error from the driver.

17.4.3.7 Vpif_DisChanParams

“Vpif.h” file contains Vpif_DisChanParams data structure that is passed while
FVID_create() call. Applications could use this structure to configure the channel
specific configurations. Most of the members of this structure directly reflect the VPIF
register settings. The driver does not check the validity of these parameters
(Example videoParams, vVbiParams etc). Please refer to VPIF peripheral reference
guide for more details. The values to be used for most of the members are given in
“Vpif.h” file. The members of this structure are explained below:

Structure Members Description
dispStdMode Operation mode title. Video mode defined by enum

Vpif_VideoMode. If the value of this mode is
Vpif_VideoMode_NONE, it suggests that user do not want
to use internal lookup table for video parameters.

dispChannelIoMode Operation mode for which the channel is opened. Channel
IO mode is defined by enum Vpif_IoMode.

dispFbParams Frame buffer settings defined by Vpif_FrameBufferParams

Page 183 of 234

C6748 BIOS PSP User Guide

structure.
dispStorageMode Indicates whether it is field or frame based storage mode.

This is only applicable for interlaced mode of operation.
*dispEdcTbl Function table of decoder module for the channel. A

statically defined EDC function table is passed to the
vpifMdCreateChan() function via the channel parameters
argument. Refer to section External Device Control section
for details. If NULL is passed then it is assumed that there
is no EDC available for that channel.

*dispVideoParams Specify the Video parameters if application would like to
specify them. This is an optional parameter. If not used,
set this element to NULL. If set to NULL, the driver will
read the video parameters depending upon the
“dispStdMode” set. If it is not NULL, its value will prevail
over whatever mode being set. In this case the mode
parameter in “dispVideoParams” should be
Vpif_VideoMode_NONE. CAUTION: If wrong parameters are
sent, the driver does not verify the validity of these
parameters

dispVbiService Indicates what type VBI services are required by this
mode. Available values for this field are defined in
"Vpif.h" file with VPIF VBI Ancillary Data service title.

dispVbiSliceService If the VBI type is Slice VBI then what kind of service it is.
Valid only if one of the “dispVbiService” is set as
Vpif_VbiServiceType_SLICE_VBI. Whatever slice service
is set here only that data is displayed. Available values for
this field are defined in “Fvid.h” file with FVID Slice VBI
service type title.

*dispVVbiParams Indicates the parameters for selective Vertical blanking
data. Value of NULL suggests that selective sub-regions in
the VBI space are not required. For selectively sub-regions
in the VBI space this should hold appropriate value. The
values are defined by Vpif_RawSelectiveVbiParams
structure.

*dispHVbiParams Indicates the parameters for selective Horizontal blanking
data. Value of NULL suggests that selective sub-regions in
the HBI space are not required. For selectively sub-regions
in the VBI space this should hold appropriate value. The
values are defined by Vpif_RawSelectiveVbiParams
structure.

 “dispVbiService”, “dispVbiSliceService” are valid for BT display. Ancillary
data is only supported for BT byte streams.

 If “dispEdcTbl” is passed as NULL, the driver will not throw any error and it
is assumed that there is no EDC available for that channel.

 Setting both, “dispStdMode” as Vpif_VideoMode_NONE and
“dispVideoParams” as NULL in channel parameters will results in error from
the driver.

Page 184 of 234

C6748 BIOS PSP User Guide

17.4.3.8 Vpif_Params

“Vpif.h” file contains Vpif_Params data structure that is passed during
vpifMdBindDev() call which is defined with UDEV VPIF parameters in TCF file of
application. This structure defines the device configurations. The members of this
structure are explained below:

Structure Members Description
hwiNumber HWI number associated with this device event. This is the

HWI number application chooses to configure the ECM
event (one of 0, 1, 2, 3) that is pertaining to the VPIF DSP
interrupt event. The value of this depends on which ECM
block the VPIF interrupt fall. Please note that no validation
is done by the driver.

dmaReqSize Request size for DMA data transfer from/to VPIF. Data size
is either luminance or chrominance. DMA size defined by
enum Vpif_DmaReqSize.

pscPwrmEnable Boolean flag to enable (TRUE) or disable (FALSE) any
power management in the driver

pllDomain Pll domain where the device is

17.4.4 Interface Functions

17.4.4.1 Vpif_init

This function needs to be called as part of BIOS initialization by setting initFxn for at
particular UDEV instance or by calling this function as part of user specific initFxn.

17.5 FVID Configurations
This section describes the functions, data structures, enumerations and macros for
the FVID module. Please refer to Fvid.h for complete configurations and
explanations. The following API functions are defined by the FVID module:

Function Description

FVID_create Initialize the VPIF channel object

FVID_delete De-allocate an FVID channel object

FVID_control Send device-specific control command to the mini-driver

FVID_exchange Exchange an application-owned buffer for a driver-owned buffer

FVID_dequeue Get a pointer of the frame buffer from driver to application.

FVID_queue Relinquish the frame buffer back to the driver from application.

FVID_allocBuffer Allocate a frame buffer using the driver's memory allocation
routines.

FVID_freeBuffer Free the buffer allocated via FVID_allocBuffer().

17.5.1 Constants & Enumerations

17.5.1.1 Define for IOM_Packet

/* IOM user defined command base address */

Page 185 of 234

C6748 BIOS PSP User Guide

#define FVID_BASE (IOM_USER)

/* Command for FVID_exchange to exchange buffers between Driver and
Application */

#define FVID_EXCHANGE (FVID_BASE + 0)

/* Command for FVID_queue to submit a video buffer back to video device
driver */

#define FVID_QUEUE (FVID_BASE + 1)

/* Command for FVID_dequeue to request the video device driver to give
ownership of a data buffer */

#define FVID_DEQUEUE (FVID_BASE + 2)

/* Command for FVID_allocBuffer to request the video device driver to
allocate one data buffer */

#define FVID_ALLOC_BUFFER (FVID_BASE + 3)

/* Command for FVID_freeBuffer to request the video device driver to free
memory of given data buffer */

#define FVID_FREE_BUFFER (FVID_BASE + 4)

These are command codes used for FVID to GIO API conversion macros.

17.5.1.2 Define for Slice service

/* FVID Slice VBI Service: NONE */

#define Fvid_SLICE_VBI_SERVICES_NONE 0x0

/* FVID Slice VBI Service: Wide screen signaling (WSS) for PAL */

#define Fvid_SLICE_VBI_SERVICES_WSS_PAL 0x1u

/* FVID Slice VBI Service: Copy generation management system (CGMS)for NTSC*/

#define Fvid_SLICE_VBI_SERVICES_CGMS_NTSC 0x2u

/* FVID Slice VBI Service: Closed caption for NTSC */

#define Fvid_SLICE_VBI_SERVICES_CC_NTSC 0x4u

/* FVID Slice VBI Service: MAX */

#define Fvid_SLICE_VBI_SERVICES_MAX 3

/* Maximum data size for FVID Slice VBI data in bytes */

#define FVID_SLICE_VBI_DATA_SIZE_BYTES_MAX 4

This enumeration defines the different slice services supported by the VPIF driver.

17.5.1.3 Enum for Color format

typedef enum FVID_colorFormat_t

{

 FVID_YCbCr422_INTERLEAVED = 0,

 FVID_YCbCr422_PLANAR,

Page 186 of 234

C6748 BIOS PSP User Guide

 FVID_YCrCb422_INTERLEAVED,

 FVID_YCbCr422_SEMIPLANAR_UV,

 /* YCbCr4:2:2 YC Semi Planar(YUV422UVP) */

 FVID_RGB_888_INTERLEAVED,

 FVID_RGB565_INTERLEAVED,

 FVID_DVD_MODE,

 FVID_CLUT_INDEXED,

 FVID_ATTRIBUTE,

 FVID_BAYER_PATTERN,

 FVID_RAW_FORMAT,

 FVID_COLORFORMAT_INVALID

}FVID_colorFormat;

The enumeration string itself is self explanatory of the color format. Only
FVID_YCbCr422_SEMIPLANAR_UV is supported for BT video data (capture and display)
and FVID_RAW_FORMAT format is supported for RAW video capture are supported.

 VPIF supports BT video data in YCbCr 4:2:2 in YC Planar (YUV422UVP) where
CbCr are packed. For displaying or capturing FVID_YCbCr422_SEMIPLANAR_UV
enum should be used. FVID_YCbCr422_SEMIPLANER_UV is the only BT video
format supported.

 For RAW capture VPIF get the data in Bayer Pattern from the sensor. For
capturing RAW data FVID_RAW_FORMAT should be used

17.5.1.4 Enum for frame storage format

typedef enum FVID_storageFormat_t

{

 FVID_STORAGE_FORMAT_FRAME,

 FVID_STORAGE_FORMAT_FIELD

} FVID_storageFormat;

This enumeration is used for specifying the storage format of the frame buffer video
data. FIELD and FRAME storage is applicable only for interlaced formats. For
progressive formats it is always FRAME mode of storage.

 For details regarding the data storage please refer to SDRAM frame storage
format section.

17.5.1.5 Enum for VBI service type

typedef enum FVID_vbiService_t

{

 FVID_VBI_SERVICE_NONE = 0x0,

 FVID_VBI_SERVICE_HBI = 0x1,

Page 187 of 234

C6748 BIOS PSP User Guide

 FVID_VBI_SERVICE_RAW_VBI = 0x2,

 FVID_VBI_SERVICE_SLICE_VBI = 0x4

}FVID_vbiService;

This enumeration defines the different types of VBI services possible. Depending up
on the type of VBI service application can see the respective data for that service in
the frame buffer.

17.5.1.6 Enum for video interface

typedef enum FVID_videoInterface_t

{

 FVID_VI_BT656_8BIT,

 /**< 8-bit BT.656 interface with embedded sync */

 FVID_VI_BT656_10BIT,

 /**< 10-bit BT.656 interface with embedded sync */

 FVID_VI_YC_8BIT_CS,

 /**< 8-bit YC interface with external control sync */

 FVID_VI_YC_10BIT_CS,

 /**< 10-bit YC interface with external control sync */

 FVID_VI_YC_16BIT_ES,

 /**< 16-bit YC interface with embedded sync */

 FVID_VI_YC_16BIT_CS,

 /**< 16-bit YC interface with external control sync */

 FVID_VI_RAW_8BIT_CS,

 /**< 8-bit RAW interface with external control sync */

 FVID_VI_RAW_10BIT_CS,

 /**< 10-bit RAW interface with external control sync */

 FVID_VI_RAW_16BIT_CS,

 /**< 16-bit RAW interface with external control sync */

 FVID_VIDEOINTERFACE_INVALID

}FVID_videoInterface;

This enumeration is not used and is for future use.

17.5.1.7 Enum for Field Frame Modes

typedef enum FVID_FieldFrame_t

{

 FVID_FIELD_MODE = 0,

Page 188 of 234

C6748 BIOS PSP User Guide

 /**< Interlaced Mode */

 FVID_FRAME_MODE

 /**< Progressive Mode */

}FVID_FieldFrame;

This enumeration is not used and is for future use.

17.5.1.8 Enum for Bits per Pixel for different modules

typedef enum FVID_bitsPerPixel_t

{

 FVID_BPP_BITS1 = 1,

 FVID_BPP_BITS2 = 2,

 FVID_BPP_BITS4 = 4,

 FVID_BPP_BITS8 = 8,

 FVID_BPP_BITS10 = 10,

 FVID_BPP_BITS12 = 12,

 FVID_BPP_BITS16 = 16,

 FVID_BPP_BITS24 = 24

} FVID_bitsPerPixel;

The ENUM string itself is self explanatory of the bits per pixel. The video data is
always FVID_BPP_BITS8 for BT capture and display. For raw capture the data width
can be 8bpp, 10bpp or 12bpp depending on what is set during channel creation.

17.5.2 Data Structures

17.5.2.1 Structure for Interlaced Frame

typedef struct FVID_IFrame_t

{

 Char* y1;

 /**< Character pointer for field 1 Y data */

 Char* cb1;

 /**< Character pointer for field 1 CB data */

 Char* cr1;

 /**< Character pointer for field 1 CR data */

 Char* y2;

 /**< Character pointer for field 2 Y data */

 Char* cb2;

 /**< Character pointer for field 2 CB data */

Page 189 of 234

C6748 BIOS PSP User Guide

 Char* cr2;

 /**< Character pointer for field 2 CR data */

} FVID_IFrame;

This structure is not used in the current C6748 VPIF driver as it doesn’t support
separate Cb and Cr components for chrominance. This is meant for future purpose.

17.5.2.2 Structure for Progressive Frame

typedef struct FVID_PFrame_t

{

 Char* y;

 /**< Character pointer for frame Y data */

 Char* cb;

 /**< Character pointer for frame CB data */

 Char* cr;

 /**< Character pointer for frame CR data */

} FVID_PFrame;

This structure is not used in the current C6748 VPIF driver as it doesn’t support
separate Cb and Cr components for chrominance. This is meant for future purpose.

17.5.2.3 Structure for Slice frame

typedef struct FVID_SliceFrame_t

{

 Uint32 fvidSliceServiceId;

 /**< Type of Slice service. Available values for this field are defined
with FVID Slice VBI Service title in Fvid.h. */

 Uint8 fvidField;

 /**< Field for which VBI data is required. 0: first field, 1: second
field*/

 Uint8 fvidData[FVID_SLICE_VBI_DATA_SIZE_BYTES_MAX];

 /**< Place holder for getting the slice VBI data. */

}FVID_SliceFrame;

This structure defines the slice data frame structure. VPIF frame buffer structure
contains pointer to this structure for slice data.

17.5.2.4 Structure for Semi Planar Frame

typedef struct FVID_SpFrame_t

{

 Uint8 *y1;

 /**< Pointer for top field Y data */

Page 190 of 234

C6748 BIOS PSP User Guide

 Uint8 *c1;

 /**< Pointer for top field CB/CR data */

 Uint8 *y2;

 /**< Pointer for bottom field Y data. Not used for progressive format. */

 Uint8 *c2;

 /**< Pointer for bottom field CB/CR data. Not used for progressive
format.*/

}FVID_SpFrame;

This structure is used in the current C6748 VPIF driver. VPIF captures or displays
video data in semi planar frame format. This structure will be used during VPIF frame
transfer.

Here “1” in the variable name represents field 0 data and “2” represents field 1 data.
For example fields named as y1 and y2, where y1 represents field 0 luminance data
and y2 represents field 1 luminance data. They are not named as y0 and y1 in order
to keep it backward compatible with earlier FVID layers.

All the members are valid in case of interlaced mode but for progressive mode only
y1, c1 are used.

For progressive video data only use y1 and c1.

For interlaced video data only – frame/field mode use y1, y2, c1 and c2

The c data is CbCr packed.

 To know how the data pointers mapped for FIELD and FRAME mode video
storage please refer to SDRAM frame storage format section

17.5.2.5 Structure for VBI Frame

typedef struct FVID_VbiFrame_t

{

 Uint8 *h1;

 /**< Pointer for top field RAW HANC data. Not used if RAW HANC data

 is not required */

 Uint8 *h2;

 /**< Pointer for bottom field RAW HANC data. Not used if RAW HANC data

 is not required */

 Uint8 *v1;

 /**< Pointer for top field RAW VANC data. Not used if RAW VANC data

 is not required */

 Uint8 *v2;

 /**< Pointer for bottom field RAW VANC data. Not used if RAW VANC data

 is not required */

Page 191 of 234

C6748 BIOS PSP User Guide

 FVID_SliceFrame *s1;

 /**< Slice VBI data structure for top field*/

 FVID_SliceFrame *s2;

 /**< Slice VBI data structure for bottom field*/

}FVID_VbiFrame;

This structure is used in the current C6748 VPIF driver for capturing and displaying
the VBI data.

Here “1” in the variable name represents field 0 data and “2” represents field 1 data.
For example for interlaced h1, h2, v1, v2, s1, and s2 are valid but for progressive
only h1, v1 and s1 are valid. h1 and h2 are for RAW HBI data. v1 and v2 are for RAW
VBI data. s1 and s2 are for slice VBI data.

All the members are valid in case of interlaced mode but for progressive mode only
h1, v1, s1 are used.

For raw VBI use v1 (progressive) and both v1 and v2 (interlaced)

For raw HBI use h1 (progressive) and both h1 and h2 (interlaced)

For slice VBI use s1 (progressive) and s1 and s2 (interlaced)

17.5.2.6 Structure for Interlaced Raw Frame

typedef struct FVID_RawIFrame_t

{

 Char* buf1;

 /**< Character pointer for field 1 */

 Char* buf2;

 /**< Character pointer for field 2 */

} FVID_RawIFrame;

This structure is used to store the raw interlaced video data from vpif driver.

17.5.2.7 Structure for Progressive Raw Frame

typedef struct FVID_RawPFrame_t

{

 Char* buf;

 /**< Character pointer for frame */

} FVID_RawPFrame;

This structure is used to store the raw progressive data from vpif driver.

17.5.2.8 Structure for FVID frame buffer descriptor

typedef struct FVID_Frame_t

{

Page 192 of 234

C6748 BIOS PSP User Guide

 QUE_Elem queElement;

 /**< for queuing */

 union {

 FVID_IFrame iFrm;

 /**< y/c frame buffer for interlaced mode */

 FVID_PFrame pFrm;

 /**< y/c frame buffer for progressive mode */

 FVID_RawIFrame riFrm;

 /**< raw frame buffer for interlaced mode */

 FVID_RawPFrame rpFrm;

 /**< raw frame buffer for progressive mode */

 Ptr frameBufferPtr;

 FVID_SpFrame spFrm;

 /**< y/c frame buffer for semi planar data */

 } frame; /**< \brief union for frame type as used by driver */

 Uint32 timeStamp;

 /**< Time Stamp for captured or displayed frame */

 Uint32 pitch;

 /**< Pitch parameters for given plane */

 Uint32 lines;

 /**< Number of lines per frame */

 FVID_bitsPerPixel bpp;

 /**< Number of bits per pixel */

 FVID_colorFormat frameFormat;

 /**< Frame Color Format */

 FVID_storageFormat storeFormat;

 /**< Storage Format */

Page 193 of 234

C6748 BIOS PSP User Guide

 FVID_VbiFrame vbiFrm;

 /**< VBI frame */

 FVID_vbiService vbiService;

 /**< VBI Service */

 Ptr userParams;

 /**< In/Out Additional User Parameters per frame */

 Ptr misc;

 /**< For future use */

}FVID_Frame;

This structure is the descriptor which consolidates the buffer pointers and other
useful parameters.

The structure members’ bpp (bits per pixel), frameFormat, storeFormat,
vbiService, pitch and lines are updated during the time of buffer allocation. The
structure member timestamp, queElement and frame are used in C6748 VPIF driver
and applications. They are used/updated for every frame exchange (queue/dequeue)
operation. The structure member misc, userParams are not used by the C6748
driver currently and is meant for future purpose.

C6748 Vpif driver only supports planar 422 formats. Planar format is used for all of
the frame types. YUV 422 planar format is used for Y/C frame buffer (vpifFrm).
Frame types riFrm and rpFrm use raw format. “vbiFrm” used for VBI data storage.

17.5.3 Interface Functions

Following sections explain the use of parameters of FVID calls in the context of Vpif
driver. Note that no effort is made to document the use of GIO calls; any Vpif
specific requirements are covered below.

17.5.3.1 FVID_create

Syntax

FVID_Handle FVID_create(String name, Int mode, Int *status, Ptr optArgs,
FVID_Attrs *attrs);

Parameters

name

The name argument is the name specified for the device when it was created
in the configuration or at runtime. It is used to find a matching name in the
device table.

 Strings are case sensitive.

For VPIF driver the string is divided into 5 tokens separated by ‘/’.

 VPIF driver instance

Page 194 of 234

C6748 BIOS PSP User Guide

This identifies the VPIF instance. For capture/display drivers this will
be typically “VPIF0”. This string depends on the device registration
string given in BIOS driver TCI file.

 VPIF channel instance

This identifies the channel to be opened in the VPIF instance. The VPIF
instance has four channels – “0”, “1”, “2” and “3”. Capture channel is
supported on channel “0” and “1”, whereas display is supported on
channel “2” and “3”. RAW capture is supported only on channel “0”.

 From here onwards the string is passed as is to the EDC driver and will
be used by EDC driver internally. The tokens are typically more
dependent on the EVM schematics and external encoders and decoders
present in the EVM.

 If there is no requirement for EDC driver configuration for a VPIF
channel, the token afterwards can be absent.

 Codec string

This identifies the codec which will be used to program the encoder
and decoders. The encoders and decoders on C6748 EVM are
connected to instance 0 of I2C and hence “I2C0” string is used. Based
upon this string the underlying codec interface driver is opened.

 EDC driver name

This is the name of the EDC driver to be opened for the channel. This
will be used internally by the EDC driver to validate that the open call
is for proper EDC driver. In the present C6748 EVM there are two
instances of TVP5147. For channel 0 “TVP5147_1” string is used and
for channel 1 “TVP5147_0” string is used. On C6748, for channel 2
“ADV7343” string is used for SD display.

 Function pointer for the EDC driver, which is represented by “EDC
driver name”, should be passed properly during channel creation.

 EDC codec address

This token tells the EDC driver about the external device address. This
address is used by the codec interface to read/write the
encoder/decoder registers.

 This token is typically more dependent on the EVM schematics and
external encoders and decoders present in the EVM. Please refer to
the schematics documents for the same.

The following table shows the typical names for the current C6748 EVM

String Name Description

"/VPIF0/0/I2C0/TVP5147_1/0x5D" For VPIF instance 0 and channel no 0,
EDC is connected through I2C 0
instance. The EDC device name is
TVP5147 #1 which is connected for SD
capture having I2C address as 0x5D.

"/VPIF0/1/I2C0/TVP5147_0/0x5C" For VPIF instance 0 and channel no 1,
EDC is connected through I2C 0
instance. The EDC device name is
TVP5147 #0 which is connected for SD

Page 195 of 234

C6748 BIOS PSP User Guide

capture having I2C address as 0x5C.

"/VPIF0/2/I2C0/ADV7343/0x2A" For VPIF instance 0 and channel no 2,
EDC is connected through I2C 0
instance. The EDC device name is
ADV7343 which is connected for SD
display having I2C address as 0x2A.

"/VPIF0/0/I2C0/MT9T001/0x5D" For VPIF instance 0 and channel no 0,
EDC is connected through I2C 0
instance. The external image sensor
name is MT9T001 which is connected
for RAW capture having I2C address as
0x5D.

mode

The mode argument specifies the mode in which the device is to be opened.
This may be IOM_INPUT or IOM_OUTPUT. IOM_INPUT mode is used for capture
channel creation and IOM_OUTPUT mode is used for display channel creation.

status

The status argument is an output parameter that this function fills with a
pointer to the status that was returned by the mini-driver.

optArgs

The optArgs parameter is a pointer that may be used to pass device or
domain-specific arguments to the mini-driver. The contents at the specified
address are interpreted by the mini-driver in a device-specific manner. The
memory segment id for memory allocation is also passed via this parameter.

For Vpif driver, optArgs will be pointer of type Vpif_CapChanParams for
capture driver SD/raw capture channel creation or Vpif_DisChanParams for
display channel creation.

VPIF driver doesn’t assume any default value for this argument. This is
because segment ID (used for frame buffer allocation) is passed to the driver
only through this parameter. Hence VPIF driver will return error value if
application passes NULL for this parameter.

attrs

The attrs parameter is a pointer to a structure of type FVID_Attrs. This is not
supported and NULL should be passed.

Return Value

It returns the handle of type FVID_Handle on successful opening of a device. It
returns NULL if the device could not be opened.

Description

An application calls FVID_create() to create and initialize a VPIF driver channel. The
driver will not allocate frame buffers for FVID_exchange() and other APIs during this
call. Applications have to create buffers for this purpose. It is suggested that
applications should use the APIs FVID_allocBuffer() and FVID_freeBuffer() provided
with driver for frame buffer allocation purpose.

A minimum of 3 frame buffers is required per channel creation for proper operation.

FVID_create() returns a handle to the channel if it is successfully opened. This
handle should be used by subsequent FVID module calls on this channel.

Page 196 of 234

C6748 BIOS PSP User Guide

Constraints

This function can only be called after the device has been loaded and initialized.

The “mode” parameter should be IOM_INPUT for channel 0 and 1 and IOM_OUTPUT for
channel 2 and 3.

Example

The example below shows creation of capture channel 0 for VPIF

/* Structure to store each driver channel information */

typedef struct ChannelInfo_t

{

 FVID_Handle chanHandle; /* Channel handle */

 FVID_Frame *frame; /* Current FVID frame buffer pointer */

}ChannelInfo;

/* Structure containing display and capture channel information */

ChannelInfo capChInfo;

Vpif_CapChanParams vCapParamsChan;

/* Setup Capture Channel 0 -> Composite. Use this capture driver name string
as they are for proper driver creation */

Int8 *vpifCapStrings = "/VPIF0/0/I2C0/TVP5147_1/0x5D";

/* Create and configure capture drivers */

vCapParamsChan.capEdcTbl = &TVP5147_Fxns;

vCapParamsChan.capChannelIoMode = Vpif_IoMode_CAP;

vCapParamsChan.capFbParams.frmBufAlignment = 128u;

vCapParamsChan.capFbParams.frmBufSegId = 0;/* Create from system heap*/

vCapParamsChan.capStdMode = Vpif_VideoMode_NTSC;

vCapParamsChan.capStorageMode = Vpif_SdramStorage_FIELD;

vCapParamsChan.capVideoParams = NULL;

vCapParamsChan.capVbiService = Vpif_VbiServiceType_NONE;

capChInfo.chanHandle = FVID_create(vpifCapStrings,

 IOM_INPUT,

 &status,

 (Ptr)&vCapParamsChan,

 NULL);

if ((IOM_COMPLETED != status) || (NULL == capChInfo.chanHandle))

{

Page 197 of 234

C6748 BIOS PSP User Guide

 LOG_printf(&trace, "Failed to create capture channel");

}

17.5.3.2 FVID_delete

Syntax

Int FVID_delete(FVID_Handle fvidChan);

Parameters

fvidChan

Handle of the vpif driver channel that was created with a call to
FVID_create().

Return Value

The function returns IOM_COMPLETED on success or negative value if an error
occurred. This function is a wrapper above GIO_delete() function. Since GIO_delete()
always returns success irrespective of VPIF driver return value, this function always
returns IOM_COMPLETED.

Description

This function call will close the logical channel associated with fvidChan parameter. It
will not free the buffers allocated by driver. It is the applications responsibility to free
the already allocated buffers before channel deletion. Please note that, if
capture/display operation is started, then Vpif_IOCTL_CMD_STOP should be called
before calling FVID_delete().

EDC driver associated with the channel is also closed in this function call.

Constraints

This function can only be called after the device has been loaded, initialized and
created.

Example

The example below shows deletion of the capture channel already created

/* Delete capture driver */

status = FVID_delete(capChInfo.chanHandle);

if (IOM_COMPLETED != status)

{

 LOG_printf(&trace, "Failed to delete capture channel");

}

17.5.3.3 FVID_control

Syntax

Int FVID_control(FVID_Handle fvidChan, Int cmd, Ptr args);

Parameters

fvidChan

Handle of the vpif driver channel that was created with a call to
FVID_create().

cmd

Page 198 of 234

C6748 BIOS PSP User Guide

The cmd argument specifies the control command.

args

The args argument is a pointer to the argument or structure of arguments
that are specific to the command being passed.

Return Value

This function returns IOM_COMPLETED on success or negative value if an error
occurred.

Description

An application calls FVID_control() to send device-specific control commands to the
mini-driver.

Below are the supported control commands by C6748 Vpif driver. The following
sections explain the commands in detail.

 Vpif_IOCTL_CMD_CHANGE_RESOLUTION

Reconfigures the resolution of capture or display channel. This
command can be used to change the resolution of the operating
channel.

 Vpif_IOCTL_CMD_START

Start display/capture operation.

 Vpif_IOCTL_CMD_STOP

Stop display/capture operation.

 Vpif_IOCTL_CMD_GET_NUM_IORQST_PENDING

Gets the number of pending request at driver level

 Vpif_IOCTL_CMD_GET_CHANNEL_STD_INFO

Get the current channel configuration parameters from driver.

 Default IOCTL

Configure the external encoders and decoders. Interface will depend
on the encoder/decoder drivers.

Constraints

This function can only be called after the device has been loaded, initialized and
created. The handle supplied as an argument to this function should have been
obtained with a previous call to FVID_create().

 This function is not re-entrant for a channel.

Example

The example below shows the start of the capture channel for VPIF

/* Start the capture operations */

status = FVID_control(capChInfo.chanHandle, Vpif_IOCTL_CMD_START, NULL);

if (IOM_COMPLETED != status)

{

 LOG_printf(&trace, "Failed to start capture channel device");

}

Page 199 of 234

C6748 BIOS PSP User Guide

17.5.3.3.1Vpif_IOCTL_CMD_CHANGE_RESOLUTION

Syntax

Int FVID_control(fvidChan, Vpif_IOCTL_CMD_CHANGE_RESOLUTION, args);

Parameters

fvidChan

Handle of the vpif driver channel that was created with a call to
FVID_create().

cmd

Vpif_IOCTL_CMD_CHANGE_RESOLUTION control command.

args

The argument is a pointer to structure containing the new configuration and is
of type Vpif_ConfigParams. Application can choose to specify the pre-defined
modes (enum Vpif_VideoMode) in the “mode” parameter or Application can
set the “mode” parameter to “Vpif_VideoMode_NONE” and provide the filled
up Vpif_ConfigParams structure.

Return Value

This function returns IOM_COMPLETED on success or negative value if an error
occurred.

Description

This function call is used to change the resolution for a channel.

Application calls this function when channel is stopped and the driver will reconfigure
the resolution parameters but will not start channel. Application has to queue buffers
before starting channel again.

It is application’s responsibility to free memory for all the buffers before
reconfiguring channel.

Constraints

This function can only be called after the device has been stopped. The handle
supplied as an argument to this function should have been obtained with a previous
call to FVID_create(). Also the buffer the buffers should be freed up, as the buffer
requirement changes once the resolution changes.

 Please note that changing the resolution between SD, HD and RAW mode is
not allowed i.e. channel properties cannot be changed (Application may need
to close the channel and create channel in that case).

 Using this IOCTL the application can switch between different resolutions with
in SD (PAL to NTSC) or HD (720P to 1080P) or RAW (VGA to SVGA).

 If application sets valid mode in “mode” parameter and also sends the filled
structure, the driver would consider the “mode” parameter and update
accordingly.

 The driver does not check the validity for these parameters when application
passes the structure with updated parameters for changed resolution.

Example

The example below shows changing resolution of a raw capture channel for VPIF

Vpif_ConfigParams chResolution;

Page 200 of 234

C6748 BIOS PSP User Guide

chResolution.mode = Vpif_VideoMode_RAW_UXGA;

status = FVID_control(rawChInfo.chanHandle,

 Vpif_IOCTL_CMD_CHANGE_RESOLUTION,

 &chResolution);

if (IOM_COMPLETED != status)

{

 LOG_printf(&trace, "Failed to change the resolution");

}

17.5.3.3.2Vpif_IOCTL_CMD_START

Syntax

Int FVID_control(fvidChan, Vpif_IOCTL_CMD_START, args);

Parameters

fvidChan

Handle of the vpif driver channel that was created with a call to
FVID_create().

cmd

Vpif_IOCTL_CMD_START control command.

args

None

Return Value

This function returns IOM_COMPLETED on success or negative value if an error
occurred.

Description

This function call is used to start capture or display operation.

Constraints

This function can only be called after the device has been loaded, initialized and
created. The handle supplied as an argument to this function should have been
obtained with a previous call to FVID_create().

This function can be called only after minimum required buffers are queued up.

Example

The example below shows starting a display channel for VPIF

/* Start display operation */

status = FVID_control(disChInfo.chanHandle, Vpif_IOCTL_CMD_START, NULL);

if (IOM_COMPLETED != status)

{

 LOG_printf(&trace, "Failed to start display channel device");

}

Page 201 of 234

C6748 BIOS PSP User Guide

17.5.3.3.3Vpif_IOCTL_CMD_STOP

Syntax

Int FVID_control(fvidChan, Vpif_IOCTL_CMD_STOP, args);

Parameters

fvidChan

Handle of the vpif driver channel that was created with a call to
FVID_create().

cmd

Vpif_IOCTL_CMD_STOP control command.

args

None

Return Value

This function returns IOM_COMPLETED on success or negative value if an error
occurred.

Description

This function call is used to stop capture or display operation.

Constraints

This function can only be called after the device has been loaded, initialized, created
and started. The handle supplied as an argument to this function should have been
obtained with a previous call to FVID_create().

This function can be called only after capture or display operation has started.

Example

The example below shows stopping a capture channel for VPIF

/* Stop capture operation */

status = FVID_control(capChInfo.chanHandle, Vpif_IOCTL_CMD_STOP, NULL);

if (IOM_COMPLETED != status)

{

 LOG_printf(&trace, "Error in stopping capture operation");

}

17.5.3.3.4Vpif_IOCTL_CMD_GET_NUM_IORQST_PENDING

Syntax

Int FVID_control(fvidChan, Vpif_IOCTL_CMD_GET_NUM_IORQST_PENDING, args);

Parameters

fvidChan

Handle of the vpif driver channel that was created with a call to
FVID_create().

cmd

Vpif_IOCTL_CMD_GET_NUM_IORQST_PENDING control command.

args

Pointer to integer

Page 202 of 234

C6748 BIOS PSP User Guide

Return Value

This function returns IOM_COMPLETED on success or negative value if an error
occurred.

Description

This function call will get number of pending requests at driver level. It will provide
number of requests yet to be served by driver.

Constraints

This function can only be called after the device has been loaded, initialized and
created. The handle supplied as an argument to this function should have been
obtained with a previous call to FVID_create().

This function can be called only after minimum required buffers are queued up.

Example

The example below shows getting pending request with the channel for VPIF

FVID_Handle chanHandle;

Int numPendingReq;

/* channel creation and queueing should be done here */

/* call to get number of pending requests */

status = FVID_control(capChInfo.chanHandle,

 Vpif_IOCTL_CMD_GET_NUM_IORQST_PENDING,

 &numPendingReq);

if (IOM_COMPLETED != status)

{

 LOG_printf(&trace, "Failed in getting pending requests");

}

17.5.3.3.5Vpif_IOCTL_CMD_GET_CHANNEL_STD_INFO

Syntax

Int FVID_control(fvidChan, Vpif_IOCTL_CMD_GET_CHANNEL_STD_INFO, args);

Parameters

fvidChan

Handle of the vpif driver channel that was created with a call to
FVID_create().

cmd

Vpif_IOCTL_CMD_GET_CHANNEL_STD_INFO control command.

args

Pointer to structure of type Vpif_StdInfo

Return Value

This function returns IOM_COMPLETED on success or negative value if an error
occurred.

Description

Page 203 of 234

C6748 BIOS PSP User Guide

This function will provide current channel standard parameters.

Constraints

This function can only be called after the device has been loaded, initialized and
created. The handle supplied as an argument to this function should have been
obtained with a previous call to FVID_create().

Example

The example below shows how to get the channel parameters for a raw capture
channel for VPIF

Vpif_StdInfo rawParams;

status = FVID_control(rawChInfo.chanHandle,

 Vpif_IOCTL_CMD_GET_CHANNEL_STD_INFO,

 &rawParams);

if (IOM_COMPLETED != status)

{

 LOG_printf(&trace, "Failed to get raw capture channel info");

}

17.5.3.3.6Default ioctl

Any other ioctls passed, apart from the above, results in a call to the EDC driver for
that channel. This call is only made if the channel parameter “dispEdcTbl” or
“capEdcTbl” is not passed as NULL during channel creation.

To call any EDC specific ioctl application needs to add Vpif_IOCTL_CMD_MAX to the
EDC ioctl.

Example

The example below shows how to set configuration for a display channel for VPIF

Adv7343_ConfParams vDisParamsEncoder =

{

 Adv7343_AnalogFormat_COMPOSITE, /* AnalogFormat */

 Adv7343_Std_AUTO, /* Video std */

 Adv7343_InputFormat_YCBCR422, /* InputFormat */

 Fvid_SLICE_VBI_SERVICES_NONE /* slice vbi service */

};

/* Configure ADV7343 */

status = FVID_control(disChInfo.chanHandle,

 Vpif_IOCTL_CMD_MAX + Edc_IOCTL_CONFIG,

 (Ptr)&vDisParamsEncoder);

if (IOM_COMPLETED != status)

{

Page 204 of 234

C6748 BIOS PSP User Guide

 LOG_printf(&trace, "Failed to get raw capture channel info");

}

17.5.3.4 FVID_exchange

Syntax

Int FVID_exchange(FVID_Handle fvidChan, Ptr bufp);

Parameters

name

Handle of the vpif driver channel that was created with a call to
FVID_create().

bufp

The bufp argument is an in/out parameter that points to the application-
owned buffer that is to be relinquished back to the driver. After the call
returns successfully, this function fills bufp with a pointer to the structure of
type FVID_Frame that was exchanged by the device driver.

Return Value

FVID_exchange() returns IOM_COMPLETED when it is completed successfully. If an
error occurs, a negative value will be returned.

Description

An application calls FVID_exchange() to relinquish a video buffer back to the vpif
device driver and take a buffer back from the driver. This function fills bufp with a
pointer to the structure of type FVID_Frame that is exchanged by the device driver
and returned to application. This API function will result in an vpifMdSubmitChan()
call being made to the mini-driver.

For capture operation the buffer submitted to the driver is an empty buffer and the
buffer returned from the driver is most recent captured frame and for display
operation the buffer to be displayed is submitted to the driver and the buffer
returned is empty or already displayed.

This operation is similar to calling FVID_queue() and FVID_dequeue() one after the
other. Refer corresponding API description for details.

Constraints

This function can only be called after the device has been loaded, initialized and
created. Cache coherency of the frame buffer should be taken care by the
application.

Example

The example below shows buffer exchange for a capture channel for VPIF

/* Invalidate the buffer before giving to capture driver */

BCACHE_inv(capChInfo.frame->frame.vpifFrm.y1, (sizeimage * 2), TRUE);

/* Give the old capture frame buffer back to driver and get the recently
captured frame buffer */

status = FVID_exchange(capChInfo.chanHandle, &(capChInfo.frame));

if (IOM_COMPLETED != status)

Page 205 of 234

C6748 BIOS PSP User Guide

{

 LOG_printf(&trace, "Error in exchanging capture buffer");

}

17.5.3.5 FVID_dequeue

Syntax

Int FVID_dequeue(FVID_Handle fvidChan, Ptr bufp);

Parameters

fvidChan

Handle of the vpif driver channel that was created with a call to
FVID_create().

bufp

The bufp argument is an out parameter that this function fills with a pointer
to the structure of type FVID_Frame that was allocated by the device driver.

Return Value

FVID_dequeue() returns IOM_COMPLETED when it completes successfully. If an error
occurs, a negative value will be returned. If there is no buffer available with driver to
return to application, this function will be blocked. But if application calls
FVID_dequeue() after calling Vpif_IOCTL_CMD_STOP and if there is no buffer
available with driver to return to application, then IOM_ENOPACKETS code will be
returned.

Description

An application will call FVID_dequeue() to request the vpif device driver to give
ownership of a data buffer. This API function will result in an vpifMdSubmitChan()
call being made to the mini-driver.

For display operation, the driver will return an empty frame buffer which the
application can use to fill the next frame data to be displayed. For capture operation,
the driver will return the most recently captured frame buffer which can be used by
the application for further processing.

After the channel is stopped, this function is used to get all the buffers owned by the
driver to free it by calling FVID_freeBuffer() API.

Constraints

This function can only be called after the device has been loaded, initialized and
created. Cache coherency of the frame buffer should be taken care by the
application.

This function should be called only after queuing minimum number of buffers to the
drivers.

Example

The example below shows buffer dequeue for a capture channel for VPIF

/* Request a frame buffer from capture driver. Capture buffer will return the
latest captured buffer */

status = FVID_dequeue(capChInfo.chanHandle, &(capChInfo.frame));

if (IOM_COMPLETED != status)

Page 206 of 234

C6748 BIOS PSP User Guide

{

 LOG_printf(&trace, "Failed to dequeue capture channel device");

}

17.5.3.6 FVID_queue

Syntax

Int FVID_queue(FVID_Handle fvidChan, Ptr bufp);

Parameters

fvidChan

Handle of the vpif driver channel that was created with a call to
FVID_create().

bufp

The bufp argument is a pointer to the structure of type FVID_Frame that was
previously allocated by the device driver and is not to be relinquished.

Return Value

FVID_queue() returns IOM_COMPLETED when it completes successfully. If an error
occurs, a negative value will be returned.

Description

An application calls FVID_queue() to submit a video buffer to the vpif device driver.
This API function will result in an vpifMdSubmitChan() call being made to the mini-
driver.

For display operation, the application gives a filled frame buffer that needs to be
displayed next. For capture operation, the application gives an empty buffer to the
driver for capturing the next frame data.

Before the channel is started, this function is used to queue the required number of
buffers allocated by calling FVID_allocBuffer() API.

Constraints

This function can only be called after the device has been loaded, initialized and
created. Cache coherency of the frame buffer should be taken care by the
application.

The pointer that is passed as an argument to this call must point to a video buffer of
type FVID_Frame. This pointer must point to either the buffer newly allocated or the
buffer already provided by the driver through a call to FVID_dequeue() or
FVID_exchange() or FVID_allocBuffer() calls.

Example

The example below shows buffer queue for a capture channel for VPIF

/* Queue the frame buffers for capture */

status = FVID_queue(capChInfo.chanHandle, &(capChInfo.frame));

if (IOM_COMPLETED != status)

{

 LOG_printf(&trace, "Failed to Queue capture buffer");

}

Page 207 of 234

C6748 BIOS PSP User Guide

17.5.3.7 FVID_allocBuffer

Syntax

Int FVID_allocBuffer(FVID_Handle fvidChan, Ptr bufp);

Parameters

fvidChan

Handle of the vpif driver channel that was created with a call to
FVID_create().

bufp

The bufp argument is an out parameter which will contain pointer to the
allocated frame buffer from the segment ID provided as a part of channel
parameter in FVID_create().

Return Value

FVID_allocBuffer() returns IOM_COMPLETED when it completes successfully.
IOM_EALLOC is returned in case of insufficient memory for buffer allocation else a
negative value will be returned in case of other errors.

Description

An application will call FVID_allocBuffer() to request the vpif device driver to allocate
one data buffer. This function allocates memory for one frame buffer and one
structure variable of type FVID_Frame. This function fills buffer pointer in FVID_Frame
structure variable and assigns its pointer to the structure pointer of type FVID_Frame
passed as an argument. This API function will result in an vpifMdControlChan() call
being made to the mini-driver. The segment ID passed to the driver during
FVID_create() will be used for allocation.

It is the responsibility of the application to dequeue the buffer from driver and free it
before the channel is deleted.

Constraints

This function can only be called after the device has been loaded, initialized and
created.

Example

The example below shows how to allocate and queue the frame buffers in capture
channel for VPIF

/* Allocate and Queue buffers for capture channel */

/* Allocate Frame buffer for capture driver */

status = FVID_allocBuffer(capChInfo.chanHandle, &(capChInfo.frame));

if (IOM_COMPLETED != status)

{

 LOG_printf(&trace, "Failed to allocate buffer for capture");

}

else

{

 /* After mapping each buffer, it is a good idea to first "zero" them out.
Here it is being set to a mid grey-scale Y=0x80, Cb=0x80, Cr=0x80*/

Page 208 of 234

C6748 BIOS PSP User Guide

 memset((Uint8 *)capChInfo.frame->frame.vpifFrm.y1, 0x80, sizeimage);

 memset((Uint8 *)capChInfo.frame->frame.vpifFrm.c1, 0x80, sizeimage);

 /* Queue the frame buffer for capture */

 status = FVID_queue(capChInfo.chanHandle, &(capChInfo.frame));

 if (IOM_COMPLETED != status)

 {

 LOG_printf(&trace, "Failed to Queue capture buffer");

 }

}

17.5.3.8 FVID_freeBuffer

Syntax

Int FVID_freeBuffer(FVID_Handle fvidChan, Ptr bufp);

Parameters

fvidChan

Handle of the vpif driver channel that was created with a call to
FVID_create().

bufp

The bufp argument will contain pointer to the frame buffer that is to be
released.

Return Value

FVID_freeBuffer() returns IOM_COMPLETED when it completes successfully. If an error
occurs, a negative value will be returned.

Description

An application will call FVID_freeBuffer() to request the vpif device driver to free
memory of one data buffer. Pointer to this data buffer will be passed as an argument
to FVID_freeBuffer(). This API call will free memory of one data buffer and one
FVID_Frame structure variable. This API function will result in an
vpifMdControlChan() call being made to the mini-driver.

Constraints

This function can only be called after the device has been loaded, initialized and
created. The pointer that is passed as an argument to this call must point to a video
buffer of type FVID_Frame. This pointer must point to buffer already allocated by the
driver through a call to FVID_allocBuffer().

Example

The example below shows how to dequeue and free a frame buffer in capture
channel for VPIF

/* Dequeue buffers from driver and free them */

status = FVID_dequeue(capChInfo.chanHandle, &(capChInfo.frame));

if (IOM_COMPLETED != status)

{

Page 209 of 234

C6748 BIOS PSP User Guide

 LOG_printf(&trace, "IOM_COMPLETED != status for DQ");

}

status = FVID_freeBuffer(capChInfo.chanHandle, &(capChInfo.frame));

if (IOM_COMPLETED != status)

{

 LOG_printf(&trace, "IOM_COMPLETED != status for free buff");

}

17.5.4 Using FVID API’s

The following is a simplified example of an application that is capturing data from a
video source (e.g. DVD) and displaying the data to a display device (e.g. TV).

#include <std.h>

#include "ti/pspiom/vpif/Fvid.h"

#include "ti/pspiom/vpif/Vpif.h"

#define NUM_FRAME_BUFFERS (3u)

#define MAXLOOPCOUNT (500u)

/* Structure to store each driver channel information */

typedef struct ChannelInfo_t

{

 FVID_Handle chanHandle; /* Channel handle */

 FVID_Frame *frame; /* Current FVID frame buffer pointer */

}ChannelInfo;

Void main()

{

 /* DSP/BIOS scheduler starts at the termination of main() */

}

/* Video processing task */

Void vpifSampleApp(Void)

{

 Vpif_CapChanParams vCapParamsChan;

 Vpif_DisChanParams vDisParamsChan;

 /* Structure containing display and capture channel information */

Page 210 of 234

C6748 BIOS PSP User Guide

 ChannelInfo capChInfo;

 ChannelInfo disChInfo;

 Int8 *vpifCapStrings = "/VPIF0/0/I2C0/TVP5147_1/0x5D";

 Int8 *vpifDisStrings = "/VPIF0/2/I2C0/ADV7343/0x2A";

 /* Create and configure capture drivers */

 vCapParamsChan.capEdcTbl = &TVP5147_Fxns;

 vCapParamsChan.capChannelIoMode = Vpif_IoMode_CAP;

 vCapParamsChan.capFbParams.frmBufAlignment = 128u;

 vCapParamsChan.capFbParams.frmBufSegId = 0;/* Create from system heap*/

 vCapParamsChan.capStdMode = Vpif_VideoMode_NTSC;

 vCapParamsChan.capStorageMode = Vpif_SdramStorage_FIELD;

 vCapParamsChan.capVideoParams = NULL;

 vCapParamsChan.capVbiService = Vpif_VbiServiceType_NONE;

 capChInfo.chanHandle = FVID_create(vpifCapStrings,

 IOM_INPUT,

 &status,

 (Ptr)&vCapParamsChan,

 NULL);

 /* Create and configure display driver */

 vDisParamsChan.dispEdcTbl = &ADV7343_Fxns;

 vDisParamsChan.dispChannelIoMode = Vpif_IoMode_DIS;

 vDisParamsChan.dispFbParams.frmBufAlignment = 128u;

 vDisParamsChan.dispFbParams.frmBufSegId = 0;/* Create from system heap*/

 vDisParamsChan.dispStdMode = Vpif_VideoMode_NTSC;

 vDisParamsChan.dispStorageMode = Vpif_SdramStorage_FIELD;

 vDisParamsChan.dispVideoParams = NULL;

 vDisParamsChan.dispVbiService = Vpif_VbiServiceType_NONE;

 vDisParamsChan.dispHVbiParams = NULL;

 vDisParamsChan.dispVVbiParams = NULL;

 disChInfo.chanHandle = FVID_create(vpifDisStrings,

 IOM_OUTPUT,

 &status,

 (Ptr)&vDisParamsChan,

Page 211 of 234

C6748 BIOS PSP User Guide

 NULL);

 for (bufCount = 0; bufCount < NUM_FRAME_BUFFERS; bufCount++)

 {

 /* Allocate Frame buffers */

 FVID_allocBuffer(capChInfo.chanHandle, &(capChInfo.frame));

 FVID_allocBuffer(disChInfo.chanHandle, &(disChInfo.frame));

 /* Queue the frame buffers to driver */

 FVID_queue(capChInfo.chanHandle, &(capChInfo.frame));

 FVID_queue(disChInfo.chanHandle, &(disChInfo.frame));

 }

 /* Start display and capture operations */

 FVID_control(disChInfo.chanHandle, Vpif_IOCTL_CMD_START, NULL);

 FVID_control(capChInfo.chanHandle, Vpif_IOCTL_CMD_START, NULL);

 /* Let application have ownership of first frame buffers */

 FVID_dequeue(capChInfo.chanHandle, &(capChInfo.frame));

 FVID_dequeue(disChInfo.chanHandle, &(disChInfo.frame));

 while (counter < MAXLOOPCOUNT)

 {

 /* Invalidate the buffer before giving to capture driver */

 BCACHE_inv(capChInfo.frame->frame.vpifFrm.y1, (sizeimage * 2), TRUE);

 /* Give the old capture frame buffer back to driver and get the
recently captured frame buffer */

 FVID_exchange(capChInfo.chanHandle, &(capChInfo.frame));

 /* Flush and invalidate the processed buffer so that the DMA reads
the processed data */

 BCACHE_wbInv(capChInfo.frame->frame.vpifFrm.y1, (sizeimage * 2),
TRUE);

 /* Give the captured frame buffer to display driver and get a
free frame buffer for next capture */

 FVID_exchange(disChInfo.chanHandle, &(capChInfo.frame));

 counter++;

 }

 /* Stop capture and display operation */

 FVID_control(disChInfo.chanHandle, Vpif_IOCTL_CMD_STOP, NULL);

Page 212 of 234

C6748 BIOS PSP User Guide

 FVID_control(capChInfo.chanHandle, Vpif_IOCTL_CMD_STOP, NULL);

 /* Free the buffer owned by application */

 FVID_freeBuffer(disChInfo.chanHandle, &(disChInfo.frame));

 FVID_freeBuffer(capChInfo.chanHandle, &(capChInfo.frame));

 /* Dequeue buffers from driver and free them */

 for (bufCount = 0; bufCount < (NUM_FRAME_BUFFERS - 1u); bufCount++)

 {

 FVID_dequeue(disChInfo.chanHandle, &(disChInfo.frame));

 FVID_dequeue(capChInfo.chanHandle, &(capChInfo.frame));

 FVID_freeBuffer(disChInfo.chanHandle, &(disChInfo.frame));

 FVID_freeBuffer(capChInfo.chanHandle, &(capChInfo.frame));

 }

 /* Delete capture and display channel */

 FVID_delete(disChInfo.chanHandle);

 FVID_delete(capChInfo.chanHandle);

}

17.6 EDC Configurations
This section describes in detail about External Device Control (EDC) mechanism of
VPIF driver - EVM or hardware dependent components that are not built inside VPIF
module and VPIF has dependency on such peripherals. C6748 vpif driver configures
external video decoders and encoders using I2C interface to capture or display video.

This section describes the functions, data structures and enumerations for the EDC
module.

Most of the functionality and features supported by the EDC driver depends on the
C6748 EVM schematics and VPIF support. Features which are not supported by the
current C6748 EVM and VPIF are mentioned as NOT SUPPORTED in the appropriate
places. The options which are not supported are given only for future purpose.

 User should take care of below mentioned points while porting C6748 VPIF
driver on different EVM:

o If any encoders and decoders are different than ADV7343, TVP5147
and MT9T001, EDC driver for respective encoder or decoder should be
developed. The interface of EDC driver should be same as described in
EDC section.

o If encoders and decoders are same as C6748 EVM, but if their
hardware interface with VPIF is different than C6748 EVM then
corresponding modifications should be done in EDC driver. For
example, in some EVM, encoder A is connected with VPIF via encoder
B in bypass mode then corresponding modifications should be done in
EDC driver.

o If the Codec interface to the encoder or decoder changes other than
I2C, then the codec interface for the same should be implemented.

Page 213 of 234

C6748 BIOS PSP User Guide

17.6.1 Interface between VPIF and EDC Driver

Below figure shows interface between VPIF driver and EDC driver when any function
is being called from application. Here, EDC Open, EDC Control or EDC Close functions
represent corresponding encoder/decoder functions.

Figure 4. Interaction between VPIF and EDC driver

The EDC driver is associated with each channel of the VPIF driver through the
“capEdcTbl” or “dispEdcTbl” member (of type EDC_Fxns) of Vpif_CapChanParams
or Vpif_DisChanParams. This is passed during VPIF driver channel creation call to
vpifMdCreateChan(). Each VPIF channel can be associated with one EDC driver.

 If edcTbl is NULL in channel parameters, then it is assumed that the channel
has no external encoder or decoder attached.

C6748 EVM has following external encoders and decoders. The details of each driver
interface are explained in the following section.

 Two TVP5147 Decoders

 One ADV7343 Encoder

 External MT9T001 Sensor

VPIF Driver

Channel
Create Fxn

Channel
Control Fxn

Channel
Delete Fxn

EDC Driver

EDC Open
Fxn

EDC Control
Fxn

EDC Close
Fxn

FVID calls from Application

FVID/GIO Driver

Video Encoder or Decoder device

FVID Create FVID Control FVID Delete

Page 214 of 234

C6748 BIOS PSP User Guide

17.6.2 Constants & Enumerations

17.6.2.1 Edc_IOCTL

typedef enum Edc_IOCTL_t

{

 Edc_IOCTL_CONFIG = 0,

 /**< EDC configure command */

 Edc_IOCTL_RESET,

 /**< EDC reset command */

 Edc_IOCTL_SET_REG,

 /**< Command to write/set the EDC registers */

 Edc_IOCTL_GET_REG,

 /**< Command to read/get the EDC registers */

 Edc_IOCTL_CMD_MAX

}Edc_IOCTL;

This enum defines the different IOCTL commands used to perform control operation
on EDC device. They are common for both encoder and decoders operation. The
IOCTL command is passed as second argument to ctrl() function pointer of the EDC
device function when the driver is used directly with the application.

 These IOCTL's will be passed to EDC, only if application adds
Vpif_IOCTL_CMD_MAX to these IOCTL calls from application.

 If there is any restriction in implementing them by the encoder/decoder
device they should be appropriately noted in the respective encoder and
decoder.

Following table give the type of parameters used by these IOCTLs

Command Argument Description

Edc_IOCTL_CONFIG Tvp5147_ConfParams *

(for example)
Application has to pass
appropriate configuration
structure pointer described in the
encoder or decoder header file.

Edc_IOCTL_RESET None This will reset the EDC device.

Edc_IOCTL_SET_REG Edc_RegData * Command to write/set the EDC
registers.

Edc_IOCTL_GET_REG Edc_RegData * Command to read/get the EDC
registers.

17.6.2.2 Edc_VideoType

typedef enum Edc_VideoType_t

{

 Edc_VideoType_SD = 0,

Page 215 of 234

C6748 BIOS PSP User Guide

 /**< Indicates SD parameters */

 Edc_VideoType_ED,

 /**< Indicates ED parameters - Not supported */

 Edc_VideoType_HD

 /**< Indicates HD parameters - Not supported */

}Edc_VideoType;

This enum defines the different video types available by the encoder/decoder device.

 Enumeration related to ED and HD are not supported by the current driver on
C6748

17.6.2.3 Edc_ControlBusType

typedef enum Edc_ControlBusType_t

{

 Edc_ControlBusType_I2C,

 /**< Control Bus for Encoder/Decoder is I2C */

 Edc_ControlBusType_SPI,

 /**< Control Bus for Encoder/Decoder is SPI - Not implemented */

 Edc_ControlBusType_UNKNOWN

 /**< Delimiter Enum */

}Edc_ControlBusType;

This enum defines the underlying control bus controlling the read/write to encoder or
decoder.

 Control bus as SPI is not supported by the current driver on C6748.

17.6.3 Data Structures

17.6.3.1 Edc_RegData

“Edc.h” file contains Edc_RegData data structure that is passed in
Edc_IOCTL_GET_REG and Edc_IOCTL_SET_REG ioctl for getting and setting the
registers of the EDC device. This structure used during read or write to the
encoder/decoder registers and specifies the register write or read information. The
members of this structure are explained below:

Structure Members Description

startReg The starting index of encoder or decoder register

noRegToRW The total number of registers to read/write. CAUTION:
“noRegToRW” should be number of CONSECUTIVE registers
to be read or written.

value The register data to be read/written

 “noRegToRW” should be number of CONSECUTIVE registers to be read or
written.

Page 216 of 234

C6748 BIOS PSP User Guide

17.6.3.2 EDC_Fxns

“Edc.h” file contains EDC function table structure that is passed to the VPIF device
during channel creation. Using Edc_Fxns structure VPIF calls the open, close and
control functions of the respective encoder and decoder.

Below structure definition provides details about the function pointers where-in the
external encoder/decoder plugs-in.

typedef struct EDC_Fxns_t

{

 EDC_Handle (*open)(String name, Ptr optArg);

 /**< edcOpen() - required, open the device */

 Int32 (*close)(Ptr devHandle);

 /**< edcClose() - required, close the device */

 Int32 (*ctrl)(Ptr devHandle, Uns cmd, Ptr arg);

 /**< edcCtrl() - required, control/query device */

}EDC_Fxns;

 Every EDC based encoder /decoder/sensor should export its function table
pointer through xxx_Fxns global variable.

17.6.4 TVP5147 Decoder

The TVP5147M1 decoder supports the analog-to-digital (A/D) conversion of
component YPbPr signals, as well as the A/D conversion and decoding of NTSC, PAL,
and SECAM composite and S-video into component YCbCr. This decoder includes two
10-bit 30-MSPS A/D converters (ADCs). A total of ten video input terminals can be
configured to a combination of YPbPr, CVBS, or S-video video inputs.

On CVBS and S-video inputs, the user can control video characteristics such as
contrast, brightness, saturation, and hue via an I2C host port interface.

The digital data output can be programmed to two formats: 20-bit 4:2:2 with
external syncs or 10-bit 4:2:2 with embedded/separate syncs. The TVP5147M1
decoder includes methods for advanced vertical blanking interval (VBI) data
retrieval.

The current C6748 EVM contains 2 TVP5147 decoders capable of capturing 2 (1 x 2)
SD video channels simultaneously.

TVP5147 input and output interface details are given below:

Analog Input Interface:

 Composite video

 S-video

 Component video (Not supported)

Digital Output Interface:

 8-bit BT656, With Embedded Sync

 8-bit BT656, With External Sync (Not supported)

Automatic video standard detection (NTSC/PAL/SECAM) and switching

Page 217 of 234

C6748 BIOS PSP User Guide

TVP5147 video decoder is an independent interface which is being configured from
the VPIF driver. TVP5147 is I2C slave device. TVP5147 driver configures TVP5147
device using I2C interface.

17.6.4.1 Interface Functions

TVP5147 exports its function table pointer through TVP5147_Fxns global variable as
defined below:

/* Decoder (TVP5147) driver function table */

extern EDC_Fxns TVP5147_Fxns;

/* TVP5147 EDC function table */

EDC_Fxns TVP5147_Fxns =

{

 &TVP5147_open,

 &TVP5147_close,

 &TVP5147_ctrl

};

To use TVP5147, application shall pass this function table pointer as part of channel
parameters (“capEdcTbl” of Vpif_CapChanParams) during channel creation of
capture device. This will associate the EDC driver instance with the corresponding
channel instance.

As shown in the “Interaction between VPIF and EDC driver”, when application calls
FVID_create(), VPIF driver will internally call TVP5147_open function. This will power
on TVP5147 device, initialize I2C driver for serial communication and configures the
decoder for default settings. One of the strings “/I2C0/TVP5147_1/0x5D” or
“I2C0/TVP5147_0/0x5C” should be passed as argument to TVP5147_open function to
open the corresponding decoder channel.

 The string passed should depend on for which VPIF channel the capture
device is opened.

To configure TVP5147, application has to call FVID_control() function with
Vpif_IOCTL_CMD_MAX + Edc_IOCTL_CMD_MAX + TVP5147 IOCTL (as shown in below
table) as command. This will internally call TVP5147_ctrl function. Once the
application deletes the channel, Vpif driver internally delete the TVP5147 driver
instance and close the I2C driver as well using TVP5147_close.

17.6.4.2 Constants & Enumerations

17.6.4.2.1Tvp5147_OutputFormat

“Tvp5147.h” file contains Tvp5147_OutputFormat enum that is passed while calling
EDC_IOCTL_CONFIG IOCTL for TVP5147 from the application. This enum gives
available output format of data for Tvp5147 decoder. The members of this enum are
explained below:

Enum Members Description

Tvp5147_OutputFormat_YCBCR422 Interlaced YCbCr 422 output.

17.6.4.2.2Tvp5147_AnalogFormat

Page 218 of 234

C6748 BIOS PSP User Guide

“Tvp5147.h” file contains TVP5147_AnalogFormat enum that is passed while calling
Edc_IOCTL_CONFIG IOCTL for TVP5147 from the application. This enum tells about
the cable connection from the input device to the EVM. The members of this enum
are explained below:

Enum Members Description

Tvp5147_AnalogFormat_SVIDEO S-video selection. SVIDEO(Y/C) IN
cable used.

Tvp5147_AnalogFormat_COMPOSITE Composite video input. CVBS IN cable
used.

17.6.4.2.3Tvp5147_Std

“Tvp5147.h” file contains TVP5147_Std enum that is passed while calling
EDC_IOCTL_CONFIG IOCTL for TVP5147 from the application. This enum tells about
the video standard used. The members of this enum are explained below:

Enum Members Description

Tvp5147_Std_INVALID Invalid Input.

Tvp5147_Std_AUTO Auto switch mode of operation. The standard
will be detected automatically

Tvp5147_Std_NTSC720 Analog input standard is NTSC

Tvp5147_Std_PAL720 Analog input standard is PAL

17.6.4.2.4Tvp5147_ControlId

“Tvp5147.h” file contains Tvp5147_ControlId enum that is passed as a part of call
to Tvp5147_IOCTL_SET_CONTROL IOCTL for TVP5147 from the application. This enum
is used for control settings for TVP5147. The members of this enum are explained
below:

Enum Members Description

Tvp5147_ControlId_AUTO_GAIN Gain control. A value of 0 sets Manual
gain and value of 1 enables auto gain.

Tvp5147_ControlId_BRIGHTNESS Brightness control. A value of 255
(bright), 128 (default), 0 (dark).
Brightness supported is (0-255).

Tvp5147_ControlId_CONTRAST Contrast control (Luminance Contrast). A
value of 255(maximum contrast), 128
(default), 0 (minimum contrast). Contrast
supported is - Contrast: 0 - 255

Tvp5147_ControlId_HUE Hue control. It can have only 3 values
either 0x80(-180 degrees) or 0x7F (+180
degrees) or 0(0 degrees). HUE does not
apply to component video.

Tvp5147_ControlId_SATURATION Saturation (Chrominance Saturation)
control. A value of 255 (maximum), 128
(default), 0 (no color) Saturation
supported is -Saturation: 0 - 255

Page 219 of 234

C6748 BIOS PSP User Guide

17.6.4.2.5Tvp5147_IOCTL

“Tvp5147.h” file contains Tvp5147_IOCTL enum that is passed as a part of call to
ctrl() for TVP5147 from the application. TVP5147 driver provides support for different
IOCTL commands as shown below. Application can call FVID_control() with one of
below specified IOCTL command(in a special way) and corresponding argument to
configure TVP5147.

TVP5147 IOCTL Command Argument Description

Edc_IOCTL_CONFIG Tvp5147_Conf
Params *

Configure the TVP5147
decoder.

Edc_IOCTL_RESET None Reset the decoder

Edc_IOCTL_SET_REG Edc_RegData
*

Write to decoder register

Edc_IOCTL_GET_REG Edc_RegData
*

Read from decoder register.

Tvp5147_IOCTL_POWER
DOWN

None This ioctl will power down
the TVP5147 decoder.

Tvp5147_IOCTL_POWER
UP

None This ioctl will power up the
TVP5147 decoder.

Tvp5147_IOCTL_SET_C
ONTROL

Tvp5147_Cont
rol *

Set the various control for
TVP5147.

Tvp5147_IOCTL_SET_S
LICE_VBI_SERVICE

Uint32 * Set Slice VBI services for
TVP5147. NOTE: This ioctl
does not check whether
current set standard
supports the slice service or
not. It just sets them.

Tvp5147_IOCTL_READ_
SLICE_VBI_DATA

FVID_SliceFr
ame *

Reads Slice VBI data for
TVP5147. This IOCTL will be
used by VPIF layer to get
VBI data and put the data
inside the vpif Frame
packet

 Tvp5147_IOCTL_READ_SLICE_VBI_DATA should only be called from vpif driver
and not from application

To configure TVP5147 using generic EDC IOCTL, application has to call
FVID_control() function with Vpif_IOCTL_CMD_MAX + Edc_IOCTL_xxxx as command.
Here xxxx is generic EDC IOCTL command.

The example below shows how to use generic EDC IOCTL to write the register of the
decoder:

Edc_RegData regval;

Uint8 val;

regval.startReg = 0x02u;

regval.noRegToRW = 1u;

Page 220 of 234

C6748 BIOS PSP User Guide

val = 0x01;

regval.value = &val;

status = FVID_control(capChInfo.chanHandle,

 Vpif_IOCTL_CMD_MAX + Edc_IOCTL_SET_REG,

 (Ptr)®val);

if (IOM_COMPLETED != status)

{

 LOG_printf(&trace, "Failed to set reg. of decoder");

}

 To configure TVP5147 using specific TVP5147 IOCTL, application has to call
FVID_control() function with Vpif_IOCTL_CMD_MAX + Edc_IOCTL_CMD_MAX +
TVP5147_IOCTL_xxxx as command. Here xxxx is specific TVP5147 IOCTL
command.

The example below shows how to use specific TVP5147 IOCTL to set control
parameter (saturation) of the decoder:

//Set saturation

Tvp5147_Control control;

control.tvpVidtype = Edc_VideoType_SD;

control.tvpCtrlId = Tvp5147_ControlId_SATURATION;

control.tvpValue = 0;

/* Configure TVP5147 */

status = FVID_control(capChInfo.chanHandle,

 Vpif_IOCTL_CMD_MAX + Edc_IOCTL_CMD_MAX +

 Tvp5147_IOCTL_SET_CONTROL,

 (Ptr)&control);

if (IOM_COMPLETED != status)

{

 LOG_printf(&trace, "Set control for saturation
failed");

}

 For EDC related ioctls, FVID_control() will internally call TVP5147_ctrl
function.

17.6.4.3 Data Structures

This section describes TVP5147 data structures exposed to the application.

17.6.4.3.1Tvp5147_ConfParams

Page 221 of 234

C6748 BIOS PSP User Guide

“Tvp5147.h” file contains Tvp5147_ConfParams data structure that is passed as an
argument while calling Edc_IOCTL_CONFIG ioctl for TVP5147 from the application.
This structure contains configuration parameters for TVP5147 decoder. The members
of this structure are explained below:

Structure Members Description

tvpAnaFmt Indicates analog input format for TVP5147. Analog format
defined by enum Tvp5147_AnalogFormat.

tvpMode Indicates operation mode (NTSC/PAL) for TVP5147.
Operation mode defined by enum Tvp5147_Std.

tvpOutFmt Indicates output format for TVP5147. Output format
defined by enum Tvp5147_OutputFormat.

tvpServices Type of Slice VBI service. Available values for this field are
defined in “Fvid.h” file with FVID Slice VBI Service title.
This should be passed appropriately according to the Video
standard mode desired. CAUTION: If wrong service is sent,
the driver does not verify its validity.

17.6.4.3.2Tvp5147_Control

“Tvp5147.h” file contains Tvp5147_Control data structure that is passed as an
argument while calling Tvp5147_IOCTL_SET_CONTROL ioctl for TVP5147 from the
application. This structure contains setting control data structure for TVP5147
decoder. The members of this structure are explained below:

Structure Members Description

tvpVidtype Video Type for this control feature. Video type defined by
enum Edc_VideoType.

tvpCtrlId Control Id defined for TVP5147. Control id defined by enum
Tvp5147_ControlId.

tvpValue Value to be written to the control register.

17.6.5 ADV7343 Encoder

The ADV7343 is a high speed, digital-to-analog video encoder. Six high speed, 3.3 V,
11-bit video DACs provide support for composite (CVBS), S-Video (Y/C), and
component (YPrPb/RGB) analog outputs in either standard definition (SD), enhanced
definition (ED), or high definition (HD) video formats.

The ADV7343 has a 24-bit pixel input port that can be configured in a variety of
ways. SD video formats are supported over a SDR interface and ED/HD video
formats are supported over SDR and DDR interfaces. Pixel data can be supplied in
either the YCrCb or RGB color spaces.

It also supports embedded EAV/SAV timing codes, external video synchronization
signals, and I2C and SPI communication protocols. Cable detection and DAC auto
power-down features keep power consumption to a minimum.

On C6748 EVM, ADV7343 encoder is connected to the VPIF for BT.656 display.
ADV7343 encoder is used for NTSC/PAL SD resolution displays. The same encoder is
connected to both channel 2 and 3 but channel 3 connection on EVM does not allow
it to be used for SD display.

ADV7343 input and output interface details are given below:

Page 222 of 234

C6748 BIOS PSP User Guide

Analog Output Interface:

 S-video

 Component (RGB/YPrPb) (Not supported)

 Composite

Digital Input Interface:

 Embedded Sync

 External Sync (Not supported)

ADV7343 video encoder is an independent interface which is being configured from
the Vpif driver. ADV7343 is I2C slave device. ADV7343 driver configures ADV7343
device using I2C interface.

17.6.5.1 Interface Functions

ADV7343 exports its function table pointer through ADV7343_Fxns global variable as
defined below:

/* Encoder (ADV7343) driver function table */

extern EDC_Fxns ADV7343_Fxns;

/* ADV7343 EDC function table */

EDC_Fxns ADV7343_Fxns =

{

 &ADV7343_open,

 &ADV7343_close,

 &ADV7343_ctrl

};

To use ADV7343, application shall pass this function table pointer as part of channel
parameters (“dispEdcTbl” of Vpif_DisChanParams) during channel creation of
display device. This will associate the EDC driver instance with the corresponding
channel instance.

As shown in the “Interaction between VPIF and EDC driver”, when application calls
FVID_create(), VPIF driver will internally call ADV7343_open function. This will power
on ADV7343 device, initialize I2C driver for serial communication, and configures the
encoder for default settings. String of type “/I2C0/ADV7343/0x2A” should be passed
as argument to ADV7343_open function to open the corresponding encoder channel.

 The string passed should depend on for which VPIF channel the display device
is opened.

 VPIF channel 3 cannot be used for SD display as the ADV7343 connection is
not available for BT656 display.

To configure ADV7343, application has to call FVID_control() function with
Vpif_IOCTL_CMD_MAX + Edc_IOCTL_CMD_MAX + ADV7343 IOCTL (as shown in below
table) as command. This will internally call ADV7343_ctrl function. Once the
application deletes the channel, Vpif driver internally delete the ADV7343 driver
instance and close the I2C driver as well using ADV7343_close.

Page 223 of 234

C6748 BIOS PSP User Guide

17.6.5.2 Constants & Enumerations

17.6.5.2.1Adv7343_InputFormat

“Adv7343.h” file contains Adv7343_InputFormat enum that is passed while calling
EDC_IOCTL_CONFIG IOCTL for ADV7343 from the application. This enum gives
available input data format for ADV7343 encoder. The members of this enum are
explained below:

Enum Members Description

Adv7343_InputFormat_YCBCR422 Interlaced YCbCr 422 input.

17.6.5.2.2Adv7343_AnalogFormat

“Adv7343.h” file contains ADV7343_AnalogFormat enum that is passed while calling
EDC_IOCTL_CONFIG IOCTL for ADV7343 from the application. This enum gives
available analog connection from EVM (ADV7343 encoder) to output display device.
The members of this enum are explained below:

Enum Members Description

Adv7343_AnalogFormat_SVIDEO S-video selection. SVIDEO(Y/C) out cable
used.

Adv7343_AnalogFormat_COMPOSITE Composite video input. CVBS out cable used.

17.6.5.2.3Adv7343_Std

“Adv7343.h” file contains Adv7343_Std enum that is passed while calling
EDC_IOCTL_CONFIG IOCTL for ADV7343 from the application. This enum gives
available video operation mode for ADV7343 encoder .The members of this enum are
explained below:

Enum Members Description

Adv7343_Std_INVALID Invalid Input.

Adv7343_Std_AUTO Auto switch mode of operation. The standard
will be detected automatically

Adv7343_Std_NTSC720 Analog input standard is NTSC

Adv7343_Std_PAL720 Analog input standard is PAL

17.6.5.2.4Adv7343_ControlId

“Adv7343.h” file contains Adv7343_ControlId enum that is passed as a part of call
to Adv7343_IOCTL_SET_CONTROL IOCTL for ADV7343 from the application. This enum
is used for control settings for ADV7343. The members of this enum are explained
below:

Enum Members Description

Adv7343_ControlId_BRIGHTNESS Brightness control. Brightness supported is
(0-127); Values in the range of 0x3F to 0x44
could result in an invalid output signal.

Adv7343_ControlId_HUE Hue control. Hue Supported is - For normal
operation (zero adjustment); value is set to
0x80. Values 0xFF and 0x00 represent the

Page 224 of 234

C6748 BIOS PSP User Guide

upper and lower limits, respectively, of the
attainable adjustment in NTSC mode. Values
0xFF and 0x01 represent the upper and
lower limits, respectively, of the attainable
adjustment in PAL mode.

17.6.5.2.5Adv7343_GammaCurve

“Adv7343.h” file contains Adv7343_GammaCurve enum that is passed while calling
Adv7343_IOCTL_SET_GAMMA for ADV7343 from the application. This enum is used to
select gamma curve on ADV7343 encoder. The members of this enum are explained
below:

Enum Members Description

Adv7343_GammaCurve_A Gamma curve A.

Adv7343_GammaCurve_B Gamma curve B.

17.6.5.2.6Adv7343_IOCTL

“Adv7343.h” file contains Adv7343_IOCTL enum that is passed as a part of call to
ctrl() for ADV7343 from the application. ADV7343 driver provides support for
different IOCTL commands as shown below. Application can call FVID_control() with
one of below specified IOCTL command(in a special way) and corresponding
argument to configure ADV7343.

ADV7343 IOCTL Command Argument Description

Edc_IOCTL_CONFIG Adv7343_ConfP
arams*

Configure the ADV7343
encoder.

Edc_IOCTL_RESET None Reset the encoder

Edc_IOCTL_SET_REG Edc_RegData * Write the register to encoder

Edc_IOCTL_GET_REG Edc_RegData * Read the register from encoder

Adv7343_IOCTL_POWERDOWN None This ioctl will power down the
ADV7343 encoder.

Adv7343_IOCTL_POWERUP None This ioctl will power up the
ADV7343 encoder.

Adv7343_IOCTL_ENABLE_COLOR
BAR

Bool * This ioctl will enable or disable
ADV7343 internal color bar. The
value of TRUE - Enables color
bar and FALSE - Disables color
bar

Adv7343_IOCTL_SET_CONTROL Adv7343_Contr
ol *

Set control for ADV7343.

Adv7343_IOCTL_SET_GAMMA Adv7343_Gamma
Params *

Set gamma for ADV7343.

Adv7343_IOCTL_SET_SLICE_VB
I_SERVICE

Uint32 * Set Slice VBI services for
ADV7343. NOTE: This ioctl does
not check whether current set
standard supports the slice

Page 225 of 234

C6748 BIOS PSP User Guide

service or not. It just sets them.

Adv7343_IOCTL_WRITE_SLICE_
VBI_DATA

FVID_SliceFra
me *

Writes Slice VBI data for
ADV7343. This IOCTL will be
used by VPIF layer to get VBI
data and put it inside the vpif
Frame packet

 Adv7343_IOCTL_WRITE_SLICE_VBI_DATA should be called from Vpif driver and
not from application.

 To configure ADV7343 using generic EDC IOCTL, application has to call
FVID_control() function with Vpif_IOCTL_CMD_MAX + Edc_IOCTL_xxxx as
command. Here xxxx is generic EDC IOCTL command.

The example below shows how to use generic EDC IOCTL to configure for composite
output of the encoder:

Adv7343_ConfParams vDisParamsEncoder =

{

 Adv7343_AnalogFormat_COMPOSITE,/* AnalogFormat */

 Adv7343_Std_AUTO, /* Video std */

 Adv7343_InputFormat_YCBCR422, /* InputFormat */

 Fvid_SLICE_VBI_SERVICES_NONE /* slice vbi service */

};

/* Configure ADV7343 */

status = FVID_control(disChInfo.chanHandle,

 Vpif_IOCTL_CMD_MAX + Edc_IOCTL_CONFIG,

 (Ptr)&vDisParamsEncoder);

if (IOM_COMPLETED != status)

{

 LOG_printf(&trace, "Failed to config encoder");

}

 To configure ADV7343 using specific ADV7343 IOCTL, application has to call
FVID_control() function with Vpif_IOCTL_CMD_MAX + Edc_IOCTL_CMD_MAX +
ADV7343_IOCTL_xxxx as command. Here xxxx is specific ADV7343 IOCTL
command.

The example below shows how to use specific ADV7343 IOCTL to set control
parameter (hue) of the encoder:

// Set hue

Adv7343_Control control;

control.advVidtype = Edc_VideoType_SD;

control.advCtrlId = Adv7343_ControlId_HUE;

Page 226 of 234

C6748 BIOS PSP User Guide

control.advValue = 0xFF;

/* Configure ADV7343 */

status = FVID_control(disChInfo.chanHandle,

 Vpif_IOCTL_CMD_MAX + Edc_IOCTL_CMD_MAX +

 Adv7343_IOCTL_SET_CONTROL,

 (Ptr)&control);

if (IOM_COMPLETED != status)

{

 LOG_printf(&trace, "Set control for Hue failed");

}

 The FVID_control() call for the EDC device will internally call Adv7343_ctrl
function.

17.6.5.3 Data Structures

This section describes ADV7343 data structures exposed to the application.

17.6.5.3.1Adv7343_ConfParams

“Adv7343.h” file contains Adv7343_ConfParams data structure that is passed as an
argument while calling Edc_IOCTL_CONFIG ioctl for ADV7343 from the application.
This structure contains configuration parameters for ADV7343 encoder. The
members of this structure are explained below:

Structure Members Description

advAnaFmt Indicates analog output format for ADV7343. Analog
format defined by enum Adv7343_AnalogFormat.

advMode Indicates operation mode (NTSC/PAL) for ADV7343.
Operation mode defined by enum Adv7343_Std.

advInFmt Indicates the selection for digital input format for ADV7343.
Input format defined by enum Adv7343_InputFormat.

advServices Type of Slice VBI service. Available values for this field are
defined in "Fvid.h" file with FVID Slice VBI Service title.
This should be passed appropriately according to the Video
standard mode desired. CAUTION : If wrong service is sent,
the driver does not verify its validity

17.6.5.3.2Adv7343_Control

“Adv7343.h” file contains Adv7343_Control data structure that is passed as an
argument while calling Adv7343_IOCTL_SET_CONTROL ioctl for ADV7343 from the
application. This structure contains setting control data structure for ADV7343
encoder. The members of this structure are explained below:

Structure Members Description

advVidtype Video Type for this control feature. Video type defined by
enum Edc_VideoType

Page 227 of 234

C6748 BIOS PSP User Guide

advCtrlId Control Id defined for ADV7343. Control id defined by enum
Adv7343_ControlId

advValue Value to be written to the control register

17.6.5.3.3Adv7343_GammaParams

“Adv7343.h” file contains Adv7343_GammaParams data structure that is passed as
an argument while calling Adv7343_IOCTL_SET_GAMMA IOCTL for ADV7343 from
the application. This structure contains gamma parameter settings for ADV7343
encoder. The members of this structure are explained below:

Structure Members Description

type Video Type for this gamma feature. Video
type defined by enum Edc_VideoType

enGamma Enables/disables gamma correction

TRUE: Enable

FALSE: Disable

curve Selects gamma correction curve. Gamma
curve defined by Adv7343_GammaCurve.

coeff[ADV7343_MAX_GAMMA_COEFFS] Gamma correction coefficients.

17.6.6 MT9T001 Image Sensor

The MT9T001 Image sensor is a QXGA-format ½-inchCMOS active-pixel digital image
sensor with an active imaging pixel array of 2048H x 1536V. It incorporates
sophisticated camera functions on-chip such as windowing; column and row skip
mode and snapshot mode. It is a programmable simple two serial wire interface.

The image sensor can be operated in its default mode or programmed by the user for
frame size, exposure, gain setting, and other parameters. An on-chip analog-to-
digital converter (ADC) provides 10bits per pixel.

The MT9T001 produces extraordinarily clear, sharp digital pictures, and its ability to
capture both continuous video and single frames makes it the perfect choice for a
wide range of consumer and industrial applications, including digital still cameras,
digital video cameras, and PC cameras.

Pixel Data Format

The MT9T001 pixel array is configured as 2,112 columns by 1,568 rows. There are
2,057 columns by 1,545 rows of optically active pixels, which provide a four-pixel
boundary around the QXGA (2,048 x 1,536) image to avoid boundary effects during
color interpolation and correction.

The MT9T001 uses a Bayer color pattern. The even-numbered rows contain green
and red color pixels, and odd-numbered rows contain blue and green color pixels.
The even-numbered columns contain green and blue color pixels; odd-numbered
columns contain red and green color pixels.

Output Data Format

The MT9T001 image data is read out in a progressive scan. Valid image data is
surrounded by horizontal blanking and vertical blanking. The amount of horizontal
blanking and vertical blanking is programmable.

MT9T001 image sensor is an independent interface with the vpif driver. MT9T001
image sensor will be configured, through IOCTL of vpif driver. MT9T001 is I2C slave

Page 228 of 234

C6748 BIOS PSP User Guide

device. MT9T001 image sensor peripheral registers are configured using I2C driver.
I2C will communicate with MT9T001 using the slave address 0x5D. Refer to MT9T001
specs for more detail.

17.6.6.1 Interface Functions

MT9T001 exports its function table pointer through MT9T001_Fxns global variable as
defined below:

/* External Image Sensor (MT9T001) driver function table */

extern EDC_Fxns MT9T001_Fxns;

/* MT9T001 EDC function table */

EDC_Fxns MT9T001_Fxns =

{

 &MT9T001_open,

 &MT9T001_close,

 &MT9T001_ctrl

};

To use MT9T001, application shall pass this function table pointer as part of channel
parameters (“capEdcTbl” of Vpif_CapChanParams) during channel creation of raw
capture device. This will associate the EDC driver instance with the corresponding
channel instance.

 Only channel 0 of VPIF driver can be opened as RAW capture device.

MT9T001 image sensor driver is an independent interface which is called from the
Vpif driver. As shown in the “Interaction between VPIF and EDC driver”, when
application calls FVID_create() it will call MT9T001_open function. This will initialize
the MT9T001 chip, initialize I2C driver for serial communication and configures the
sensor for default configuration. It configures the I2C for further register read and
write of MT9T001 image sensor.

String of type “/I2C0/MT9T001/0x5D” should be passed as argument to
MT9T001_open function to open the corresponding channel.

To configure MT9T001, application has to call FVID_control() function with
Vpif_IOCTL_CMD_MAX + Edc_IOCTL_CMD_MAX + MT9T001 IOCTL (as shown in
below table) as command. This will internally call MT9T001_ctrl function.

Once the VPIF driver deletes the channel, it will delete the MT9T001 driver instance
and close the I2C driver as well using MT9T001_close function pointer.

17.6.6.2 Constants & Enumerations

17.6.6.2.1MT9T001_StandardFormat

“Mt9t001.h” file contains MT9T001_StandardFormat enum that is passed while
calling EDC_CONFIG IOCTL for MT9T001 from the application. This enum gives
available various video format supported by MT9T001 driver. The value can be used
to configure the MT9T001 image sensor with specified standard format. The
members of this enum are explained below:

typedef enum MT9T001_StandardFormat_t

Page 229 of 234

C6748 BIOS PSP User Guide

{

 MT9T001_MODE_VGA,

 MT9T001_MODE_SVGA,

 MT9T001_MODE_XGA,

 MT9T001_MODE_480P,

 MT9T001_MODE_576P,

 MT9T001_MODE_720P,

 MT9T001_MODE_1080P,

 MT9T001_MODE_QXGA,

 MT9T001_MODE_UXGA,

 MT9T001_MODE_SXGA

}MT9T001_StandardFormat;

17.6.6.2.2Generic IOCTL

“Mt9t001.h” file contains Mt9t001_IOCTL enum that is passed as a part of call to
ctrl() for MT9T001 from the application. MT9T001 driver provides support for
different IOCTL commands as shown below. Application can call FVID_control() with
one of below specified IOCTL command and corresponding argument to configure
MT9T001.

MT9T001 IOCTL Command Argument Description

Edc_IOCTL_CONFIG Mt9t001_ConfP
arams *

Configure the MT9T001 sensor
resolution.

Edc_IOCTL_RESET None Reset the MT9T001 sensor.

Edc_IOCTL_SET_REG Edc_RegData * Write register of MT9T001
sensor. This IOCTL is supported
with restriction that only one
register can be written to the
MT9T001 device also note the
way register values should be
passed.

Edc_IOCTL_GET_REG None This IOCTL is not supported by
MT9T001 device as some
registers when the driver tries
to read back and verify it will
give errors.

 There are no specific ioctls supported for MT9T001 device

 Edc_IOCTL_GET_REG is not supported by MT9T001 sensor driver.

The example below shows how to use generic EDC ioctl to change the resolution of
the sensor:

Vpif_ConfigParams chResolution;

Page 230 of 234

C6748 BIOS PSP User Guide

chResolution.mode = Vpif_VideoMode_RAW_UXGA;

status = FVID_control(rawChInfo.chanHandle,

 Vpif_IOCTL_CMD_CHANGE_RESOLUTION,

 &chResolution);

if (IOM_COMPLETED != status)

{

 LOG_printf(&trace, "Failed to change resolution");

}

17.6.6.3 Data Structures

This section describes MT9T001 data structures exposed to the application.

17.6.6.3.1MT9T001_FormatParams

“Mt9t001.h” file contains Mt9t001_ConfParams data structure that is part of
Mt9t001_ConfParams structure. This contains format structure for changing the
MT9T001 external image sensor resolution. Most members of these structures
directly reflect the MT9T001 sensor register settings. The driver does not check the
validity of these parameters. The members of this structure are explained below:

Structure Members Description

columnSize Value to be written in Col Size Register: 0x04

rowSize Value to be written in Row Size Register: 0x03

hBlank Value to be written in Horizontal Blanking Register: 0x05

vBlank Value to be written in Vertical Blanking Register: 0x06

shutterWidth Value to be written in Shutter Width Register - lower
mask: 0x09 and Shutter Width Register - upper: 0x08

blackLevel Value to be written in Black Level Register: 0x49

pixelClockCtrl Value to be written in Pixel Clock Control Register: 0x0A

rowStart Value to be written in Row Start Register: 0x01

colStart Value to be written in Col Start Register: 0x02

17.6.6.3.2Mt9t001_ConfParams

“Mt9t001.h” file contains Mt9t001_Control data structure that is passed as an
argument while calling Edc_IOCTL_CONFIG for MT9T001 from the application. This
structure contains parameters to change the resolution of MT9T001 sensor. The
members of this structure are explained below:

Structure Members Description

fmtParams If not NULL, indicates the individual parameters are sent
by application and they should be set instead of driver
“stdFormat” for a standard. If NULL then parameters for
“stdFormat” inside the driver are set.

Page 231 of 234

C6748 BIOS PSP User Guide

stdFormat Indicates Standard format for MT9T001. This field is not
valid if “fmtParams” is not NULL.

17.7 Power Management Implementation

17.7.1 DVFS

If there is a request from application for changing the set points (V/F pair), the
driver takes care of this and change to the appropriate state. Before calling the set
point change event the application should stop VPIF using the IOCTL. Once the set
point is changed the operation can be started back.

 Please note that for changing the set point the VPIF driver should be stopped
using the Vpif_IOCTL_CMD_STOP IOCTL.

17.7.2 Sleep

If there is a request from application for moving to sleep state
(SLEEP/STANDBY/DEEPSLEEP), the driver takes care of these events and change to
the appropriate state. Before calling the sleep, the application should stop VPIF using
the IOCTL. Once the set point is change the operation can be started back.

 Please note that for changing the set point the VPIF driver should be stopped
using the Vpif_IOCTL_CMD_STOP IOCTL.

17.8 EVM Initialization
For the ease of development of application, EVM related code is split and placed
inside the platform folder. The header file for VPIF related EVM initialization is placed
at platforms\evm6748\Vpif_evmInit.h. This section discusses about the
initialization details and structures used for EVM initialization.

 The tci file required for I2C device creation is also defined here and is named
as “vpif.tci”. Application can choose to use this tci file directly or may
define one of its own.

17.8.1 Enumeration

17.8.1.1 EvmInit_VpifChannel

“Vpif_evmInit.h” file contains enum EvmInit_VpifChannel that is passed to the
EVM configuration API. This enumeration tells for which channel, configuration should
be set. The enum string itself is self explanatory of the channel number. Following
are the enums exposed:

typedef enum EvmInit_VpifChannel_t

{

 EvmInit_VpifChannel_0,

 EvmInit_VpifChannel_1,

 EvmInit_VpifChannel_2,

 EvmInit_VpifChannel_3,

 EvmInit_VpifChannel_BOTHCAPCH,/* For RAW Capture use
both capture channel */

 EvmInit_VpifChannel_BOTHDISPCH/* Not Supported */

Page 232 of 234

C6748 BIOS PSP User Guide

}EvmInit_VpifChannel;

 Please note that for raw capture VPIF uses both channel 0 and 1, so
EvmInit_VpifChannel_BOTHCAPCH should be used as a parameter for EVM
initialization.

17.8.2 Interface details

17.8.2.1 configureVpif0

Syntax

Void configureVpif0(EvmInit_VpifChannel channelNo, Bool isHd);

Parameters

channelNo

Channel number depending upon the type of usage for which the application
is going to open the VPIF channel.

isHd

This parameter should be FALSE and reserved for future use.

Return Value

None

Description

An application will call configureVpif0() to initialize the VPIF device for the required
usage. Depending up on the “channelNo” passed all EVM related initialization is
done. This includes setting up of PINMUXES of VPIF and I2C, enabling clocks and
enabling the path of VPIF channel to the encoder or decoder.

Constraints

 This function should be called from task context.

 This function should be called before any call to the VPIF driver is made by
the application.

Example

The example below shows the call for configuration related to capture channel 0 of
VPIF

/* Configure VPIF Input Video Clocks */

configureVpif0(EvmInit_VpifChannel_0, FALSE);

17.9 Supporting “NEW” resolution
If a custom data resolution is to be supported for vpif, one would require following
these steps.

 For adding inside driver:

 Add an enumeration in Vpif_VideoMode defined in Vpif.h

 Define a macro like “VPIF_SD_PARAMS” and set the different parameters of
type Vpif_ConfigParams for the resolution.

 Add the macro to “chnParams”; where n is the channel no for which resolution
is supported.

Page 233 of 234

C6748 BIOS PSP User Guide

 Increase the mode supported by the channel by increasing the value of
“Vpif_CHn_MAX_MODES”, where n is the channel no for which resolution is
changed.

 For changing the resolution from the application, when channel is not created:

 Create the channel by passing the “capStdMode” parameter of capture
channel or “dispStdMode” parameter of display channel, as
Vpif_VideoMode_NONE.

 Update the desired resolution parameters by filling “capVideoParams”
member of capture channel parameter or “dispVideoParams” member of
display channel parameter.

 For changing the resolution from the application, when channel is created:

 Stop the channel if already started and free the frame buffers.

 Call the Vpif_IOCTL_CMD_CHANGE_RESOLUTION ioctl with “mode” parameter of
Vpif_ConfigParams structure as Vpif_VideoMode_NONE. Update the
remaining parameter of the structure as required for the resolution.

 Queue the buffers to the driver and start the channel.

17.10 EDMA3 Dependency
The VPIF controller driver does not rely on the EDMA3 LLD driver. The controller
interacts with an independent DMA controller provided to it and does not use any
EDMA3 paramsets.

17.11 Known Issues
Please refer to the top level release notes that came with this release.

17.12 Limitations
Please refer to the top level release notes that came with this release.

17.13 Sample Application
This section describes the example applications that are included in the package.
These sample application can be run as is for quick demonstration. The user will
benefit most by using these applications as sample reference source code in
developing new applications.

17.13.1 Writing Applications for Vpif

This section provides guidance to user for writing own application for Vpif capture
and display drivers.

17.13.1.1 File Inclusion

To write sample application user has to include following header files in the
application:

1. ti/pspiom/vpif/Fvid.h

This file contains FVID layer macros and structures. These macros are
wrapper macros specifically for Video above GIO Layer.

2. ti/pspiom/vpif/Vpif.h

This file contains VPIF parameters which are passed to driver at the time of
VPIF driver registration with BIOS. This file also contains configuration
structures and defines for capture/display channel configuration.

3. ti/pspiom/vpif/Edc.h

Page 234 of 234

C6748 BIOS PSP User Guide

This file contains EDC specific defines, data types and function pointer table
structure.

4. ti/pspiom/platforms/evm6748/vpifedc/Tvp5147.h

This file contains the interfaces, data types and symbolic definitions that are
needed by the application to configure the TVP5147 video decoder. This
header files needs to be added at the application only if the input to VPIF
module is from TVP5147 video decoder.

5. ti/pspiom/platforms/evm6748/vpifedc/Adv7343.h

This file contains the interfaces, data types and symbolic definitions that are
needed by the application to configure the ADV7343 video encoder. This
header files needs to be added at the application only if the video output is
configured from ADV7343 video encoder.

6. ti/pspiom/platforms/evm6748/vpifedc/Mt9t001.h

This file contains the interfaces, data types and symbolic definitions that are
needed by the application to configure the external MT9T001 sensor. This
header files needs to be added at the application only if the RAW input to
VPIF module is from external MT9T001 image sensor.

7. ti/pspiom/platforms/evm6748/Vpif_evmInit.h

This file contains EVM related data type and interfaces required for
initialization of different VPIF channels.

17.13.1.2 Buffer Management Strategy

17.13.1.2.1 Capture driver

Capture driver always returns the most recent frame captured and cycle through
available buffers when application falls behind.

Figure 5. Capture Driver Buffer Management

All buffers are initially in the free queue and the driver cycles through them in a
circular fashion. This is illustrated in (a).

When the application calls FVID_dequeue() and grabs the buffer with the most
recent data from the driver, the driver then cycles through the rest of buffers. This is
illustrated in figure from (a) to (b) and from (b) to (e).

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

(a) (b) (c) (d) (e)

: Application owned buffer

Page 235 of 234

C6748 BIOS PSP User Guide

When the application calls FVID_queue(), an empty buffer is returned by the
application to the driver’s free queue. This is illustrated in figure from (b) to (a) or
from (e) to (b).

When the application calls FVID_exchange(), an empty buffer is returned by the
application to the driver’s free queue, and a buffer with the most recent data is given

17.13.1.2.2 Display driver

Display driver queues buffers for displaying from application and keep displaying the
same frame when running out of buffers.

Figure 6. Display Driver Buffer Management

Initially all buffers except one are in the output queue, ready to be grabbed by the
application. The driver repeatedly displays the current buffer. This is shown in figure
(a).

When the application calls FVID_dequeue(), it gets a buffer from the driver.
Application starts to fill data to it while the driver is still displaying its current buffer.
This is shown in figure (a) to (b).

When the application calls FVID_queue(), it returns a buffer ready for display back to
the driver. The driver, in turn, will set this buffer as its current buffer after it
completes displaying the previous one. This is shown in figure (b) to (c) to (d).

When the application calls FVID_exchange(), it returns a buffer ready for display
back to the driver and it requires an empty buffer from the driver. This is equivalent
to calling FVID_queue() and FVID_dequeue() sequentially, as shown in figure (d) to
(e).

17.13.1.3 SDRAM Frame Storage Format

The different ways the buffer can be storage formats that the driver supports are:

 Filed mode storage

 Frame mode storage

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

(a) (b) (c) (d) (e)

: Buffer in output queue

: Application owned buffer

Page 236 of 234

C6748 BIOS PSP User Guide

In case of FRAME based storage, buffer contains line interleaved top and bottom field
data. In the FIELD based storage, top and bottom field data is stored separately in
the buffer. The following figures show field and frame mode storages:

Figure 7. Field Mode Storage

C Bottom

Buffer Height

Buffer Height

Buffer Pitch

Image Width

Image Height / 2

Buffer Address
(Y1)

 C1 = Y1 + (Buffer
Size/2)

CB Data

CR Data

C Top

Y Bottom

Y Top

 C2 = Y1 + ((Buffer Size
* 3) / 4)

 Y2 = Y1 + (Buffer
Size/4)

Page 237 of 234

C6748 BIOS PSP User Guide

Figure 8. Frame mode storage

17.13.1.4 Slice Buffer Handling

If the slice service is enabled, driver checks whether current standard supports VBI
or not. If it does not, driver returns error. It calls underlying decoder/encoder drivers
function to set the sliced VBI services in the decoder/encoder device. Decoder or
encoder driver checks for parameters validity and sets the services in the
decoder/encoder hardware.

 Please note that the encoder/decoder driver does not check when the service
(CC, CGMS, or WSS) is enabled, the same standard (NTSC, PAL) is set or not.
So if a slice service is enabled, driver does not checks whether the current
standard supports that slice VBI or not.

Example:

/* Configure TVP5147 for closed caption slice service */

status = FVID_control(capChInfo.chanHandle,

(Vpif_IOCTL_CMD_MAX + Edc_IOCTL_CMD_MAX +

Buffer Pitch

C Data

Y Data Buffer Height

Buffer Height

Image Width

Image Height

Buffer Address (Y1)

Y2 =
Y1 + Buffer Pitch

 C1 = BufferAddress
 + Buffer Size/2

 C2 =
C1 + Buffer Pitch

Top field

Bottom field

CB Data

CR Data

Page 238 of 234

C6748 BIOS PSP User Guide

Tvp5147_IOCTL_SET_SLICE_VBI_SERVICE),

 (Ptr)&capSlice);

if (1 == status) /* Returns number of slice services set
*/

{

 status = IOM_COMPLETED;

}

FVID_SLICE_VBI_SERVICES_WSS_PAL is only supported PAL capturing/displaying and
FVID_SLICE_VBI_SERVICES_CC_NTSC and FVID_SLICE_VBI_SERVICES_CGMS_NTSC are
only supported on NTSC capturing/displaying. Size of the WSS, CGMS and CC data is
14 bits, 20 bits and 16 bits per field. They will have to be stored in the buffer as
shown in the following figure:

Byte 0 B5 B4 B3 B2 B1 B0
Byte 1 B13 B12 B11 B10 B9 B8 B7 B6
Byte 2 B19 B18 B17 B16 B15 B14

Figure 9. Storage for captured CGMS data

Byte 0 B7 B6 B5 B4 B3 B2 B1 B0
Byte 1 B13 B12 B11 B10 B9 B8

Figure 10. Storage for captured WSS data

Byte 0 B7 B6 B5 B4 B3 B2 B1 B0
Byte 1 B15 B14 B13 B12 B11 B10 B9 B8

Figure 11. Storage for captured CC data for a field

Byte 0 B7 B6 B5 B4 B3 B2 B1 B0
Byte 1 B15 B14 B13 B12 B11 B10 B9 B8
Byte 2 B19 B18 B17 B16

Figure 12. Storage of display CGMS data

Byte 0 B7 B6 B5 B4 B3 B2 B1 B0
Byte 1 B13 B12 B11 B10 B9 B8

Figure 13. Storage of display WSS data

Byte 0 B7 B6 B5 B4 B3 B2 B1 B0
Byte 1 B15 B14 B13 B12 B11 B10 B9 B8

Figure 14. Storage of display CC data for a field

A single call to FVID_EXCHANGE will return all sliced VBI data belonging to one video
frame. Application need to make sure that the buffer given to the encoder should be
in byte aligned format.

Example:

Page 239 of 234

C6748 BIOS PSP User Guide

status = FVID_exchange(capChInfo.chanHandle,
&(capChInfo.frame));

if (IOM_COMPLETED != status)

{

 LOG_printf(&trace, "Error in exchanging buffer");

}

else

{

 temp = 0;

 temp = (capChInfo.frame->vbiFrm.s1->fvidData[2] <<
14 | capChInfo.frame->vbiFrm.s1->fvidData[1] << 6 |
capChInfo.frame->vbiFrm.s1->fvidData[0]);

 temp1 = 0;

 temp1 = (capChInfo.frame->vbiFrm.s2->fvidData[2] <<
14 | capChInfo.frame->vbiFrm.s2->fvidData[1] << 6 |
capChInfo.frame->vbiFrm.s2->fvidData[0]);

 disChInfo.frame->vbiFrm.s1->fvidData[0] = temp &
0xFF;

 disChInfo.frame->vbiFrm.s1->fvidData[1] = ((temp >>
8) & 0xFF);

 disChInfo.frame->vbiFrm.s1->fvidData[2] = ((temp >>
16) & 0xFF);

 disChInfo.frame->vbiFrm.s2->fvidData[0] = temp1 &
0xFF;

 disChInfo.frame->vbiFrm.s2->fvidData[1] = ((temp1 >>
8) & 0xFF);

 disChInfo.frame->vbiFrm.s2->fvidData[2] = ((temp1 >>
16) & 0xFF);

 status = FVID_exchange(disChInfo.chanHandle,
&(capChInfo.frame));

 if (IOM_COMPLETED != status)

 {

 LOG_printf(&trace, "Error in exchange ");

 }

}

17.13.1.5 Cache Coherency

Any buffer used for storing/retrieving data should be cache aligned, since they
write/read, to/from SDRAM/DDR. The alignment parameter is passed by application

Page 240 of 234

C6748 BIOS PSP User Guide

to the driver using the “frmBufAlignment” member of “dispFbParams” or
“capFbParams”, which are part of display and capture channel parameters.

Application is responsible to ensure cache coherency of video buffers, as the driver
does nothing in this respect. This is because data is typically moved by DMA between
fast on-chip RAM and slow off-chip SDRAM for faster CPU access. Furthermore,
algorithms can use ping-pong buffer schemes to parallel the DMA transfer and the
CPU execution, thus hiding most or all overhead associated with the data movement.
If this is the case, cache flush and clean operations can be avoided by aligning the
frame buffers to cache line boundaries. However, if the application does access these
buffers directly, the application must flush or clean the cache to ensure cache
coherency, the DMA accesses external memory directly through the EMIF, while the
CPU goes through the cache when accessing the data.

 Recommended Cache Operation in Application:

In a simple loopback scenario, the application doesn’t have to do any cache
operations to ensure cache coherency if buffers are exchanged between drivers. But
when the application access the video buffers through CPU say to run an algorithm
or to copy capture buffer to display buffer using CPU, then the below cache
operations are recommended for proper operation.

 Capture driver

Before providing a buffer to capture driver, the entire buffer should be
invalidated. Below code snippet illustrate this.

/* Invalidate the buffer before giving to capture driver */

BCACHE_inv(capChInfo.frame->frame.vpifFrm.y1, FRAME_SIZE, TRUE);

/* Give the old capture frame buffer back to driver and get the

recently captured frame buffer */

status = FVID_exchange(chanHandle, &frame);

 Display driver

Before providing a buffer to display driver, the entire buffer should be flushed
and invalidated. Below code snippet illustrate this.

/* Flush and invalidate the processed buffer so that the DMA reads

the processed data */

BCACHE_wbInv(capChInfo.frame->frame.vpifFrm.y1, FRAME_SIZE, TRUE);

/* Give the captured frame buffer to display driver and get a

free frame buffer for next capture */

status = FVID_exchange(chanHandle, &frame);

17.13.2 Sample Applications

17.13.2.1 Introduction

The sample application is a representative test program. They demonstrate the use
of the Vpif driver. Initialization of Vpif driver is done by calling initialization function
from BIOS.

Page 241 of 234

C6748 BIOS PSP User Guide

The Vpif sample application instantiates the I2C driver statically in vpif.tci file, inside
platforms\evm6748 folder. I2C driver is required to configure the EVM components,
to select routing of signals to VPIF and later configuring the encoder and decoder.
This file can be directly imported into an application’s tcf script.

The vpifSample.tcf file contains the remaining BIOS configuration like the
configuration of the event combiner etc. This helps to map the VPIF events to the
CPU interrupts. The most important lines in this file which the application may need
to pull into his tcf file are as follows.

bios.ECM.ENABLE = 1;

bios.HWI.instance("HWI_INT9").interruptSelectNumber = 2;

These lines configure the ECM module and map VPIF events to CPU interrupts. For
example the VPIF event number is 95 which fall in ECM group 2. Here ECM group 2 is
mapped to HWI_INT9.

The vpifSampleTask() task exercises the vpif driver. The configureVpif0() function
inside the platform file takes care of configuring the pinmux (for VPIF, I2C and
others, if required) and select the proper routing of Vpif signals to encoder and
decoder and configure clocks at proper frequency , if required.

It uses FVID APIs to create VPIF driver channels and also to perform the IO
operations.

1. SD Loop back

The SD loop back application configures capture & display drivers and starts
video loop back in NTSC/PAL resolution. By default the sample application
captures one channel and displays in NTSC resolution. The capture channel is
1 and the display channel is 2. The connection of display is Composite and for
capture the connection is S-video.

Configuration options are provided (macros defined at the start of
“vpifSample_io.c” file) to change the connection for display or capture and
to change loop back for PAL resolution.

2. RAW Capture Loop back

This sample application illustrates the RAW capture capability of Vpif driver. It
captures RAW video from MT9T001 image sensor through VPIF channel 0 and
displays the same in VPIF channel 2 in BT656 NTSC format which can be
viewed in TV. The sample application does the conversion of Bayer pattern
data from MT9T001 image sensor to RGB 888 and then YCbCr 422 so that it
can be displayed back using vpif display channel 2. The display connection
used is Composite.

By default the sample application works in 8-bit RAW capture mode for 480P
and display in 480i resolution.

Configuration options are provided (macros defined at the start of
“vpifSample_io.c” file) to change the display connection and change the
number of frame buffers.

 The conversion is done by treating each 4x4 block of data is as a
single pixel. The 2 green pixels are averaged together. The R and B
are extracted. This type of processing uses only 1/4 of the captured
resolution, i.e., 1/2 the number of pixels / line and 1/2 the lines

 The conversion algorithm when used in release mode results in a jerky
image display. This is because of the optimization by compiler.

Page 242 of 234

C6748 BIOS PSP User Guide

Therefore in release mode the file “vpifSample_conversion.c”, is
build with no optimization.

3. SD slice VBI Loop back

The SD Slice VBI loop back application configures capture & display drivers for
closed caption slice VBI service and starts video loop back in NTSC resolution.
The application also enables closed caption slice service for both encoder and
decoder. By default the sample application captures one channel and displays
in NTSC resolution with closed caption enabled. The capture channel is 0 and
the display channel is 2. The connection of both capture and display is
composite.

 Please note that enabling Slice VBI data results in I2C read and write,
and it may happen that I2C may result in some IO error. If an I2C
error happens during exchange then the application should close the
channels and disable the VBI service and reopen the channel. The
error generally happen if there is not enough bandwidth available in
the system.

 Build Procedure:

 This sample can be built using following

Open

“<ProjectDir>/packages/ti/pspiom/examples/evm6748/vpifloopback/build/ccs3/vpif
Sample.pjt” for running SD loop back sample application

(OR)

Open

“<ProjectDir>/packages/ti/pspiom/examples/evm6748/vpifraw/build/ccs3/vpifSamp
le.pjt” for running RAW capture loop back sample application

(OR)

Open

“<ProjectDir>/packages/ti/pspiom/examples/evm6748/vpifvbiloopback/build/ccs3/v
pifSample.pjt” for running SD Slice service loop back sample application

This sample can be built using the CCS interface.

 The I2C driver contains EDMA references, and hence, user should ensure that
the EDMA package path is properly taken care of in the project.

 EVM Layout:

Page 243 of 234

C6748 BIOS PSP User Guide

Figure 15. C6748 Video Input/Output connectors Layout

 Hardware setup and connections for SD Loopback

 Connect the UI card to C6748 EVM experimenter board (J28 and J29).

 Connect RCA video cable from TVP5147 #1 input of C6748 EVM to DVD Player
set in NTSC mode. Connect S-video cable from TVP5147 #0 input of C6748
EVM to DVD Player set in NTSC mode. For default application, only one input
channel is sufficient.

Connect the cables in the following sockets

o Channel 0 – J6 RCA jack

o Channel 1 – J5 S-video jack

 Connect S-video cable from ADV7343 output of C6748 EVM (J3) to TV. For
composite output from ADV7343 connect RCA cable from J4 to TV.

 Make sure the Video Clock is set to 27 MHz and the EVM mux are set properly
for SD operation.

 Load the generated video “.out” file (vpifSample.out) and execute it.

 By default, demo will display video (in Composite format from J4) captured
from TVP5154 #0 (in S-video from J5 jack) in NTSC D1 resolution.

 Below are the other configurable options available in this sample application

o “VIDEO_MODE” – Define this to “MODE_PAL” for PAL mode of
operation. Default value for this macro is “MODE_NTSC”

Composite
Video Output

S-Video
Output Composite

Video Input

S-Video
Input

J4 J3
J7 J6 J5

Camera Headboard
Connector

Page 244 of 234

C6748 BIOS PSP User Guide

o “NUM_FRAME_BUFFERS” – The default value of
“NUM_FRAME_BUFFERS” is 3 which is the recommended value. It can
be increased depending upon the memory availability on the system.

o “DISPLAY_CONNECTOR” – The default value of
“DISPLAY_CONNECTOR” is “CONN_COMPOSITE”. Define this mode to
“CONN_SVIDEO” for S-video cable connection. The channel 2 is
programmed for composite connection.

o “MAXLOOPCOUNT” - This sample application will run for
“MAXLOOPCOUNT” amount of frames. After which the application will
close. With the current value of 500 frames, the sample application will
run for 15 seconds of NTSC video or 20 seconds of PAL video. After
which the loop back operation will stop.

o “CAPTURE_CONNECTOR” – The default value of
“CAPTURE_CONNECTOR” is “CONN_SVIDEO”. Define this mode to
“CONN_COMPOSITE” for Composite cable connection. If S-video
connection is used, vpif channel 0 is used for capture and if Composite
connection is used, vpif channel 1 is used for capture.

o “VIDEO_STORAGE” – The default value of “VIDEO_STORAGE” is
“STORAGE_FRAME”. Define this mode to “STORAGE_FIELD” for field
based storage. This should be same for both capture and display. If
they are not same then proper handling of buffers is required as the
data pointed by the capture device and the display device cannot be
exchanged straightaway.

 Output:

When the sample application runs, it will demonstrate the usage of VPIF. In SD
loopback the input video data from input device viz. DVD player is displayed to the
output device viz. TV and the sample application performs some operations on the
same.

 Hardware setup and demo procedure for RAW Capture Loop back

 Connect the UI card to C6748 EVM experimenter board (J28 and J29).

 Connect MT9T001 camera headboard to J7 camera headboard connector.

 Connect S-video cable from ADV7343 output of C6748 EVM (J3) to TV. For
composite output from ADV7343 connect RCA cable from J4 to TV.

 Make sure the Video Clock is set to 27 MHz and the EVM mux are set properly
for SD operation.

 Load the generated video “.out” file (vpifSample.out) and execute it.

 By default, demo will display video (in composite format from J4) captured
from MT9T001 image sensor (J7).

 The default resolution for raw capture is 480P and for display is 480I.

 Below are the other configurable options available in this sample application

o “DISPLAY_CONNECTOR” – The default value of
“DISPLAY_CONNECTOR” is “CONN_COMPOSITE”. Define this mode to
“CONN_SVIDEO” for S-video cable connection. The channel 2 is
programmed for composite connection.

o “MAXLOOPCOUNT” - This sample application will run for
“MAXLOOPCOUNT” amount of frames. After which the application will
close. The current value of 500 frames is defined.

Page 245 of 234

C6748 BIOS PSP User Guide

o “NUM_FRAME_BUFFERS” – The default value of
“NUM_FRAME_BUFFERS” is 3 which is the recommended value. It can
be increased depending upon the memory availability on the system.

 Apart from the above there are some more macros defined. They are not for
sample application use case but for testing. Using them can stop sample
application from working.

o “SELECT_TEST_PATTERN” – When set to 1 output the test pattern on
the buffer.

o “SET_GLOBAL_GAIN” – When set to 1 set the global gain to the
MT9T001 registers

o “CONFIG_MT9T001” – When set to 1 change the resolution of
MT9T001 device to SVGA.

 Output:

For RAW loopback the input captured from the sensor is displayed on to the output
device viz. TV.

 Hardware setup and connections for SD Slice VBI Loopback

 Connect the UI card to C6748 EVM experimenter board (J28 and J29).

 Connect RCA video cable from TVP5147 #1 input of C6748 EVM to DVD Player
set in NTSC mode.

Connect the cables in the following sockets

o Channel 0 – J6 RCA jack

 For composite output from ADV7343 connect RCA cable from J4 to TV.

 Make sure the Video Clock is set to 27 MHz and the EVM mux are set properly
for SD operation.

 Put a closed caption enabled DVD in to a DVD player detecting Closed
Caption. Enable the Closed caption on both DVD player and the TV.

 The Slice service used is FVID_SLICE_VBI_SERVICES_CC_NTSC

 Load the generated video “.out” file (vpifSample.out) and execute it.

 By default, demo will display video (in Composite format from J4) captured
from TVP5154 #1 (in composite from J6 jack) in NTSC D1 resolution.

 Below are the other configurable options available in this sample application

o “VIDEO_MODE” – Define this to “MODE_PAL” for PAL mode of
operation. Default value for this macro is “MODE_NTSC”

o “NUM_FRAME_BUFFERS” – The default value of
“NUM_FRAME_BUFFERS” is 3 which is the recommended value. It can
be increased depending upon the memory availability on the system.

o “MAXLOOPCOUNT” - This sample application will run for
“MAXLOOPCOUNT” amount of frames. After which the application will
close. With the current value of 500 frames, the sample application will
run for 15 seconds of NTSC video or 20 seconds of PAL video. After
which the loop back operation will stop.

o “VIDEO_STORAGE” – The default value of “VIDEO_STORAGE” is
“STORAGE_FRAME”. Define this mode to “STORAGE_FIELD” for field
based storage. This should be same for both capture and display. If
they are not same then proper handling of buffers is required as the

Page 246 of 234

C6748 BIOS PSP User Guide

data pointed by the capture device and the display device cannot be
exchanged straightaway.

 Output:

When the sample application runs, it will demonstrate the usage of slice VBI service.
In SD slice VBI loopback the input video data and slice data from input device viz.
DVD player is displayed to the output device viz. TV and the sample application
performs some operations on the same.

17.13.2.2 Default Configuration Parameters

VPIF driver does not have any default configuration support. Before using the driver,
application should configure the driver with valid configurations. In case the driver
recognizes invalid configuration parameter it will return the corresponding error
code.

All EDC drivers have default configuration. This section describes the default
parameters for TVP5147 video decoder chip, ADV7343 video encoder chip and VPIF
driver parameters.

 Video Capture Port Default Configuration Parameters

VPIF instance parameter used during VPIF driver registration with BIOS using TCI
files. VPIF instance is configured for 128 bytes DMA transfer. Here is the default
setting inside Vpif driver:

const Vpif_Params Vpif_PARAMS =

{

 9, /* hwiNumber */

 Vpif_DmaReqSize_128BYTE, /* dma request size */

 FALSE, /* driver power aware or not */

 Vpif_PllDomain_0 /* PLL domain */

};

 These parameters should be modified by application, if application wants to
increase the DMA request size and changing the HWI number.

 Driver naming convention used for Channel creation

Application calls FVID_create() to create and initialize a VPIF driver channel.

The name argument is the name specified for the device when it was created in the
configuration file or at run-time. The name contains five fields for display channel
within it like “/VPIF0/2/I2C0/ADV7343/0x2A”.

1. “VPIF0” - name of the VPIF instance same as UDEV name

2. “2” - channel of selected VPIF. It can be “0”, “1”, “2” or “3”.

In C6748 for BT capture this can be 0 or 1, for BT display this can be 2 or 3
and for raw capture this can only be 0.

3. “I2C0” – Codec Interface used to communicate with encoder and decoder.

On C6748 this string is always same, as I2C instance 0 is connected to the
encoder and decoder.

4. “ADV7343” – encoder or decoder name.

Page 247 of 234

C6748 BIOS PSP User Guide

On C6748 EVM for decoder connected to S-video IN the name is
“TVP5147_0”, for decoder connected to Composite IN the name is
“TVP5147_1”, for encoder connected to Composite/S-video OUT the name is
“ADV7343” and for external sensor the name is “MT9T001”.

5. “0x2A” – I2C slave address.

On C6748 EVM ADV7343 is connected to the I2C address 0x2A, the TVP5147
#0 is connected to I2C address 0x5C, the TVP5147 #1 is connected to I2C
address 0x5D. For MT9T001 external image sensor, please refer to the head
board schematic for the I2C address.

 TVP5147 #0 Default Configuration Parameters

TVP5147 instance 0 decoder is connected to only S-video IN. It is configured for Auto
detection of standard. The internal default configuration used by TVP5147 encoder
driver for instance 0 during EDC open() call is:

static Tvp5147_ConfParams TVP5147_default0 =

{

 Tvp5147_AnalogFormat_SVIDEO, /* only SVIDEO input is connected to the
TVP5147 instance 0*/

 Tvp5147_Std_AUTO, /* Auto standard detection is default */

 Tvp5147_OutputFormat_YCBCR422,

 Fvid_SLICE_VBI_SERVICES_NONE /* slice vbi service default : NONE */

};

 TVP5147 #1 Default Configuration Parameters

TVP5147 instance 1 decoder is connected to only Composite IN. It is configured for
Auto detection of standard. The internal default configuration used by TVP5147
encoder driver for instance 1 during EDC open() call is:

static Tvp5147_ConfParams TVP5147_default1 =

{

 Tvp5147_AnalogFormat_COMPOSITE, /* Only Composite input is connected to
the TVP5147 instance 1 */

 Tvp5147_Std_AUTO, /* Auto standard detection is default */

 Tvp5147_OutputFormat_YCBCR422,

 Fvid_SLICE_VBI_SERVICES_NONE /* Slice vbi service default : NONE */

};

 ADV7343 Default Configuration Parameters

ADV7343 video encoder will be configured in Auto detect of standard, 8-bit YUV, S-
video output mode. The internal default configuration used by ADV7343 encoder
driver during EDC open() call is:

/** Default configuration of ADV7343 */

static Adv7343_ConfParams ADV7343_default =

{

Page 248 of 234

C6748 BIOS PSP User Guide

 Adv7343_AnalogFormat_SVIDEO, /* AnalogFormat */

 Adv7343_Std_AUTO, /* Mode */

 Adv7343_InputFormat_YCBCR422, /* InputFormat */

 Fvid_SLICE_VBI_SERVICES_NONE /* Slice vbi service */

};

 MT9T001 Default Configuration Parameters

The internal default configuration used by MT9T001 image sensor driver during EDC
open() call is:

/* Default configuration of MT9T001 */

static MT9T001_StandardFormat stdFormat = MT9T001_MODE_480P;

