

i

DM816x OpenMax
Components

OMX Components Version 05.02.00.xx

U s e r ' s G u i d e

 User’s Guide

 ii

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any
product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before
placing orders, that information being relied on is current and complete. All products are sold subject to the terms and
conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent
infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support
this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards ought
to be provided by the customer so as to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any
license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual
property right of TI covering or relating to any combination, machine, or process in which such products or services might
be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s
approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this
information with alteration voids all warranties provided for an associated TI product or service, is an unfair and deceptive
business practice, and TI is neither responsible nor liable for any such use.

Resale of TI’s products or services with statements different from or beyond the parameters stated by TI for that product
or service voids all express and any implied warranties for the associated TI product or service, is an unfair and deceptive
business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products. www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments
Post Office Box 655303

Dallas, Texas 75265

Copyright © 2011, Texas Instruments Incorporated

 iii

Preface

Read This First

About This Document

This User’s Guide serves as a software programmer’s handbook for
working with the DM816x OpenMax HDVPSS and HDVICP2 components.
It provides the necessary information regarding how to effectively use the
DM816x OpenMax HDVPSS Sub-system in customer systems and
applications. It also provides details regarding the functionality and API
interface of the components of the DM816x OpenMax HDVPSS Sub-
system.

TI’s implementation of OpenMax is based on the Khronos OpenMax
Standard v1.1.2. It may be subsequently upgraded to newer versions of the
standard as they are defined.

This document is intended for use by multimedia system integrators who
wish to build advanced end-products using TI’s DM816x SoC. It assumes
that the reader is fluent in the C language, has a good working knowledge
of multimedia frame-works and TI’s multimedia SoC architectures (DM
family). A prior knowledge of the Khronos OpenMax Standard will be very
helpful.

How to Use This Document

This document includes the following chapters:

• Chapter 1 – Introduction – provides an overview of DM816x and
the advantages of using the DM816x OpenMax Sub-system on this
SoC. This section also includes information on the internal
architecture of the software and its partitioning across the DM816x
SoC.

• Chapter 2 - OpenMax Components – describes the components
implemented by TI and their features. Also describes the data
structures and interfaces to the OpenMax components of the
DM816x OpenMax HDVPSS Sub-system.

• Chapter 3– API Reference – describes the data structures and
interfaces to the OpenMax components of the DM816x OpenMax
Sub-system

Note that the DM816x OpenMax Sub-system is being developed
through a phased implementation approach. Certain features
described in this document may not have been completely
implemented yet. Important points on the status of the implementation
is mentioned in the text of this document and marked in blue.

 Abbreviations

 iv

Abbreviations
Table of Abbreviations

Abbreviation Description

CCSv4 Code Composer Studio Version 4

CIF Common Intermediate Format

DVO1/2 Digital Video Output 1 & 2

EVM Evaluation Module

HD High Definition

HDMI High Definition Multimedia Interface

HDVPSS High Definition Video Processing Sub
System

OMX OpenMax

M2M Memory to Memory

SD Standard Definition

SOC System on Chip

VFCC Video Frame Capture Component

VFDC Video Frame Display Component

VFPC Video Frame Processing Component

VPDMA Video Port Direct Memory Access

ADEC Audio Decode Component

AENC Audio Encode Component

Read This First

 v

Information about Cautions and Warnings

This book may contain cautions and warnings.

CAUTION

WARNING

The information in a caution or a warning is provided for your protection.
Please read each caution and warning carefully.

Related Documentation

See References section for related documentation.

This is an example of a caution statement.

A caution statement describes a situation that could potentially
damage your software or equipment.

This is an example of a warning statement.

A warning statement describes a situation that could potentially
cause harm to you.

 Revision History

 vi

Revision History

Version Date Revision History

0.1 July 27, 2011 First Version

Read This First

 vii

Trademarks

Code Composer Studio™ is a Trademark of Texas Instruments
Incorporated

DSP/BIOS™ is a Trademark of Texas Instruments Incorporated

eXpressDSP™ is a Trademark of Texas Instruments Incorporated

TMS470™ is a Trademark of Texas Instruments Incorporated

All other trademarks are the property of the respective owner.

 Trademarks

 viii

 9

Contents

READ THIS FIRST ... III

CONTENTS ... 9

INTRODUCTION ... 10

OPENMAX COMPONENTS ... 17

API REFERENCE .. 43

MULTIMEDIA SAMPLE APPLICATIONS ... 63

DSP OPENMAX EXAMPLE .. 79

REFERENCES .. 90

 10

Chapter 1

Introduction

This chapter introduces the DM816x OpenMax Sub-system, including its usage,
its internal architecture and partitioning across the DM816x SoC.

DM816x

DM816x is a highly integrated video SoC targeted at networked, high-definition
(HD) video products – including surveillance video recorders, video conferencing
and set-top boxes.

The DM816x HW includes a Cortex A8 Host processor, a graphics processing unit
(GPU), a c674x DSP and a host of peripherals in addition to a dedicated video sub-
system. Video subsystem (media controller) manage three specialized compression
co-processors (HDVICP 2.0) and a dedicated HD video processing sub-system
(HDVPSS).

The host processor runs a high level OS such as Linux. HDVICP2.0 represents the
2nd generation of TI’s HD Video compression architecture. It is a compression
engine that can handle several video formats including H.264, MPEG4, MPEG2,
VC1, and RV and is scalable to different resolutions and frame-rates. HDVPSS
handles video capture, display and HW accelerated video processing functions
such as noise filtering, de-interlacing, scaling, and color processing. The c674x
DSP typically runs audio functions and customer-specific algorithms such as Video
Analytics, Face detection, pre and post processing algorithms and other video
codecs that cannot be accelerated on the HDVICP 2.0.

Why OpenMax

A complex HW architecture such as DM816X demands that the SW be carefully
designed to ensure high levels of performance and efficiency while simultaneously
being easy to use and understand. With an efficient SW architecture, TI’s
customers can swiftly optimize TI-provided SW subsystems for their specific
applications. DM816x is a highly optimized multi-core media processor with critical
real-time software partitioned across multiple processors: Cortex A8, DSP, media
controller in addition to the acceleration engines (HDVPSS and HD-VICP2). The
OpenMax implementation simplifies this multi-processor architecture such that
customers can develop their applications entirely on the Host A8 processor using
standard OpenMax APIs without digging into the complexities of inter-processor
communication, synchronization, and system partitioning. [Note: The
implementation provided with this document is limited in features and intended for
customers to understand the OpenMax call flow. The example IL client and
application provided with this release working on the Cortex A8 and makes API
calls to OpenMax components implemented on the media controller.]

 11

OpenMax is based on the idea of ‘active components’. Active components are data
processing modules that can be connected to each other through standard,
configurable data pipes allowing a continuous stream of media data to be
processed from source to destination with very little intervention from the
application. TI has adopted OpenMax APIs for media components. OpenMax has
been popularized by the industry group Khronos.

TI’s implementation of OpenMax is componentized. Each component is
implemented to support the OpenMax Standard Non-Tunnel (SNT) design. The
SNT design gives the application layer access to pre and post processed buffers
going to and from the components. In addition, the APIs have been provided and
designed to offer customers several choice of design parameters that trade-off end-
product care-abouts such as latency, channel density and video quality. A further
advantage of OpenMax is the ability to integrate the TI software seamlessly with
open source media frameworks such as those based on GStreamer, Maemo, and
Android.

OpenMax Overview

The Khronos OpenMax Working Group has defined a set of standard, open
Application Programming Interfaces (APIs) for multimedia applications. OpenMax is
a common specification for middleware applications such as codecs and media
processing. The goal is to ensure that new products can be brought to market
sooner and are easily portable across HW platforms.

Figure: Three layers of OpenMax architecture (from
http://www.khronos.org)

 12

The OpenMax APIs are standardized at 3 layers:

1 OpenMax AL (Application Layer): A standardized interface between an application and
multimedia middleware, where multimedia middleware provides the services needed to perform
expected API functionality. To allow customers flexibility in implementing their applications,
OpenMax AL is not mandated by TI. Customers are free to use their own application layers.

2 OpenMax IL (Integration Layer): A low-level interface for multimedia codecs and processing
algorithms. It gives applications the ability to interface with compression modules (codecs),
processing modules, sources, and sinks in a simplified manner. The modules themselves may
be combination of software and HW accelerators (such as HDVPSS and HD-VICP) and are
completely transparent to the user. IL provides system abstraction for components and
implementation abstraction for applications. This is the ideal layer that allows customers
flexibility with optimal system performance. OpenMax IL is implemented in the TI sub-system
and the subject of this document.

3 OpenMax DL (Development Layer): An API which contains a comprehensive set of audio,
video and imaging functions (such as FFTs and filters, color space conversion and video
processing primitives) to enable the optimized implementation of codecs. To ensure optimal
performance of codec implementations, TI’s codecs are not based on OpenMax DL.

For additional details on OpenMax refer to [1].

OpenMax Integration Layer (IL)

The OpenMax IL API encapsulates each media processing module in a component
interface. The standard was designed for codecs, sources (such as capture) and
sinks (such as display). However it is extendible to general media processing
functions also. The OpenMax IL API allows the user to load, control, connect, and
unload the individual components. This flexible core architecture allows the
Integration Layer to easily implement almost any end-product media use case and
mesh with existing graph-based media frameworks. The codec, source, sink or
processing module may itself be any combination of hardware or software and are
completely transparent to the user. The implementation of the component may also
span processors (as in the case of DM816x). Much of the OpenMax IL API is
defined by requirements of media frameworks. IL is designed to allow applications
and media frameworks to be lightweight. The design is primarily designed to handle
media. For example, handling file systems, networks, encryption etc are not part of
an OpenMax IL subsystem although such extensions are possible outside of the
standard.

The communication between components and between the application and
components are designed to be asynchronous allowing multi-threaded/ multi-
processor / HW accelerated implementations. Also the components are allowed to
communicate directly with one another via any efficient ‘proprietary tunneling’
method leading to greater flexibility and efficiency.

The OpenMax IL API consists of two main segments: the core API and the
component API. The OpenMax IL core is used for dynamically loading and
unloading components and for facilitating component communication. Once
loaded, the user communicates directly with the component using Component APIs.
The core allows a user to establish communication tunnels between components
(once set up, data flows between components without the involvement of the core).
The components may each be a source, a sink, a codec or processing module, or a
splitter or mixer. A component has parameters that can be set or queried. The
parameters could control behavior (ex: codec bit-rate) or the actual execution state

 13

of the component. Components can callback the application to return status, errors
etc. Components have interfaces called ports to pass data to other components
(through tunnels) or to the application.

An OpenMax component provides access to a standard set of component functions
via its component handle. These functions allow a client to get and set component
and port configuration parameters, component states and also to send commands
to the component, receive event notifications, allocate buffers, establish
communications with a single component port, and create tunnels between two
component ports. OpenMax allows audio, video, and image data port as well as
other ports (ex: meta-data).

Components and IL clients may communicate using either (i) Non-tunneled
communications (between the IL client and a component) (ii) standard tunneling
(standard mechanism for components to exchange data buffers directly with each
other in a standard way) or (iii) Proprietary communication (non-standard direct data
communications between two components). [Note: The implementation provided
with this document allows only standard non tunneled communication between
components].

This product is designed to support OpenMax base profile. Note that OpenMax
compliance test suite has not been executed for the components.

For further details on OpenMax IL, refer to [2].

The OpenMax IL client is the key interface between the application layer on one
hand and OpenMax components and the OpenMax core on the other. It controls the
behavior and states of the OpenMax components. To understand the dynamic
behavior of the OpenMax IL sub-system, it is important to understand the state
machine of the OpenMax components.

 14

OpenMax Component State Machine

Each OpenMax component can undergo a series of state transitions, as depicted in
Figure 1-2. The job of moving the component from one state to another is the IL
Client’s. Every component is first considered to be UNLOADED. The component
shall move to the LOADED state through a call to the OpenMax core. All other state
transitions may then be achieved by communicating directly with the component.

Figure: OpenMax component state diagram

Next the component will attempt to acquire all the resources it requires and
transition from LOADED to IDLE State. If this state transition fails due to non-
availability of resources, the client may try again or may choose to put the
component into the WAIT FOR RESOURCES state. In the WAIT FOR RESOURCE
state, for example, a semaphore set when the resource becomes available, may
then allow the component to transition to IDLE state. From here, the component
moves into the EXECUTING state indicating that the component is pending
reception of buffers to process data and will make required callbacks (specified
later) [Note: In the current implementation, all the resources are assumed to be
available and the component moves directly from LOADED to IDLE state, i.e. It
does not implement WAIT FOR RESOURCES]. The component may then be
moved into a PAUSED state to maintain a context of buffer execution with the
component without processing data or exchanging buffers [Note: PAUSED state is
not implemented in TI’s current implementation]. Buffer processing will resume
when the component moves back from PAUSED to EXECUTING state. To stop the
component, it must be transitioning from EXECUTING or PAUSED to IDLE – this
will lead the buffers that were being processed to be lost.

Note that a component can enter an invalid state when a state transition is made
with invalid data. The only way to exit the invalid state is to unload and reload the
component. Note: INVALID state is not implemented in TI’s current implementation.
Behavior of the system for incorrect / corrupt data is not guaranteed in this version].

 15

OpenMax Component Architecture

Figure 1-3 depicts the component architecture. The OpenMax component has a
single handle into its data structure and array of functions. It makes multiple
possible outgoing calls depending on the number of ports it has. It may call an IL
Client's event handler. It may also make callbacks to a specified external function.
Each port is also associated with a handle to a queue of pointers to buffer headers.
The buffer headers point to the actual buffers. In Non tunneled architecture, buffers
are allocated by component upon request by IL client through OMX_AllocateBuffer()
APIs. Typically output port of component allocates the buffers and input port of
connected component uses that buffer. All parameter or configuration calls are
performed on a particular index and include a structure associated with that
parameter or configuration.

Figure: OpenMax Component Architecture

OpenMax component classes

The DM816x OpenMax Sub-system includes the following classes of OpenMax
components. The user must note a key distinction between ‘class of components’
and ‘individual OpenMax components’. Each individual component is a separate
OpenMax component with a unique name from the viewpoint of the IL client. A
class of components is a collection of components implemented in an identical
manner in the TI implementation.

1. Video Frame Capture Component (VFCC) Class – is the class of components
that manages Video Capture from an external source such as a camera. It is
implemented on the media controller. The actual component name invoked will
be different depending on the nature of the capture – Examples: Multiplexed
video (a feature of DM816x), and Non-multiplexed video will be separate
components.

 16

2. Video Frame Display Component (VFDC) – Video display sink. Implemented on
the media controller. The DM816x allows up to three displays. Each display is
an independent instance of the VFDC class of components. . [In this release,
VFDC component has been integrated and tested with 2 HD displays only].

3. Video Frame Processing Component (VFPC) – Video frame processing class of
components. Implemented on the media controller. Features such as scalar,
deinterlacers and Noise filter are individual components within the VFPC class
of components.

4. CTRL component (CTRL) - The control components are the ones that has no
omx input/output ports. This is not a data processing component. The job of the
CTRL is to configure & start the control functionalities such as external video
decoder (TVP, SIL etc) and display controller configurations on the DM816x.

5. Video Decode Component (VDEC) – This component is responsible for video
bit stream decoding. This component works on one frame per buffer basis.
Currently It supports H264 and MPEG2 decode.

6. Video Encode Component (VENC) - This component is responsible for video bit
stream encoding. This component works on one frame per buffer basis.
Currently It supports only H264 encode.

7. Audio Decode Component (ADEC) – This component is responsible for audio
bit stream decoding. This component works on one frame per buffer basis. This
component supports only single buffer per input/output port. Currently it
supports MP3 and AAC-LC decode.

8. Audio Encode Component (AENC) – This component is responsible for audio
encoding. This component works on one frame per buffer basis. This
component supports only single buffer per input/output port. Currently it
supports AAC-LC encode.

The DM816x provides multiple graphics display ports, each of which may be flexibly
alpha-blended with video. The graphics ports are each accessible through the
HLOS APIs – i.e. Linux Frame Buffer device (FBDev) in TI’s software
implementation. The OpenMax APIs for a specific display’s OpenMax VFDC
component allow the user to specify the actual graphics plane that a specific display
may be blended with.

 17

Chapter 2

OpenMax Components

This section provided a description of the OpenMax components available on the
DM816x OpenMax Multimedia Sub-system.

General Information about OMX components

Each OpenMax component implemented by TI has a unique name that also
specifies its location in the hierarchy of OpenMax components.

• Video Frame Display Component

• Video Frame Capture Component

• Video Frame Processing Componnet

• Video Control Componnet

• Video Encode Component

• Video Decode Component

• Audio Decode Component

• Audio Encode Component

Following OMX APIs are used to create and configure the OpenMax
components.

• Creating the component

API : OMX_GetHandle – create the component instance. Component name is
unique for each component, which is used to create the component. Component
handle returned in this call will be used for all other OpenMax APIs.

Example : OMX_GetHandle(&pAppData->pDisHandle, " OMX.TI.VPSSM3.VFDC",

 pAppData->disILComp, &pAppDat a->pCb);

• Configuring the parameters

API : OMX_SetParameter

Example : OMX_SetParameter(pAppData- >pDisHandle, (OMX_INDEXTYPE)
OMX_TI_IndexParamVFDCDriverInstId, &driverId);

 18

For Configuring different parameter, different index types can be used and
associated structures can be passed in above API. Component handle is used to
distinguish between different components.

2.1 Video Frame Display Component (VFDC)

OMX Component Name : OMX.TI.VPSSM3.VFDC

Video frame display component takes the input buffer from the memory and displays that
buffer on the external device like TV . The VFDC component is a sink component that
has input ports but no output ports. The job of the VFDC is to display the frames provided
to it.

OMX component implementation on media controller and APIs has been available on
A8/Linux. There is one instance of the display component for each display attached to
the system. DM816x allows up to 3 displays and hence allows the IL client to instantiate
up to 3 VFDC components (each identified by a unique instance ID).

After displaying a frame, the buffers corresponding to that frame are freed up. The VFDC
runs on the media controller using one active thread. This thread is normally sleeping and
activated on the posting of an event in the callback function invoked by the display driver.
When activated, the component de-queue any buffers returned by the driver and queues
a new set of buffers from the input port into the display driver. In case there is no new
frame available to queue (ex: when frames are generated slower than the display rate), it
queues the last displayed buffer (still owned by the OMX component) again for display. It
frees frames that are already displayed back into the corresponding input data pipe.

DM816x supports 3 display components simultaneously:

• Two HD display components (OMX_VIDEO_DISPLAY_ID_HD0 and
OMX_VIDEO_DISPLAY_ID_HD1). The input ports can only be of data type
YUV422P. The maximum resolution supported in these ports is 1080p60.
These components are not available in this release.

• One SD display (OMX_VIDEO_DISPLAY_ID_SD0) (not validated in the
current release)

• VFDC support different standard resolution like 1080p60, 1080i60, 720p60
etc for HD VENC and SD resolution for SD VENC

Different paths within VFDC could be configured using display controller.
Once the display operation is started, the VFDC always retains the last buffer and
displays the same buffer continuously till the application gives a new buffer to
display.

Features Supported
• YUV422 interleaved format
• Interlaced and progressive displays
• Resolution up to 1080P@60FPS display on HD VENC D_DVO1/DVO2 through

Bypass paths
• Field merged interlaced buffer mode
• Added GDR support for H264 encoder

 19

Limitations

• VFDC supports only one handle per instance. This means that a specific driver could
be opened only once.

• Support queuing mechanism. Application may queue multiple buffers and VFDC
displays the buffers one after another sequentially in order the buffers are queued.

• Once the display operation is started, the display driver always retains the last buffer
and displays the same buffer continuously till the application gives a new buffer to
display.

• Application should stop display operation before it could dequeue the last buffer from
the component.

• Before the display operation is started, the application has to queue a minimum set of
buffers. This operation is called priming.

• The minimum of number buffers required could defer from driver to driver. Generally
this is equal to 1 buffer and the recommended value is equal to 3 buffers

Configuration

Control interface provides the necessary means of controlling mechanism for an individual
component. This interface provides a set of functions to manage the Display component
instances, like creation, deletion etc, function to connect the Display component to specific
data interface, functions to control & configure and functions to query and receive different
types of statistics, diagnostics and state related information.

All these control mechanism to the Display component is through OpenMax core sending
control messages to Display component. On processing the message display component
may respond with the acknowledgements with the result of processing.

These configuration parameters are categorized into 3 different classifications:

1) OMX Core Parameters – These are OMX mandatory base class parameters that must
be initialized prior to requesting the component instance handle.

For setting basic parameters in OMX, following API / Index is used. It uses standard
OMX structure for defining the parameters.

OMX_SetParameter(pAppData->pDisHandle,
OMX_IndexParamPortDefinition, ¶mPort);

 Following are the common parameters frequently changed:

Field Name Description Values

format.video.nFrameWidth Number of columns for
display

 Integer value of range

16 to 1920

format.video.nFrameHeight Number of lines for
display

Integer value of range

16 to 1080

format.video.eColorFormat Format of input buffer OMX_COLOR_FormatYC

 20

bYCr

nBufferCountActual Number of input
buffers

Integer value

Min = 4, Max 32

format.video.nStride Pitch of video data It should be twice of
Width, as only supported
format is YUV 422.

inbufsize Size of the input buffer Stride * Height

2) VFDC Core Parameters – These are VFDC mosaic parameters, which upon
instantiation are initialized to default parameters. Typically these parameter
values are overridden according to the required application use case.

 OMX Index: OMX_TI_IndexParamVFDCCreateMosaicLayout

 Config Structure : OMX_PARAM_VFDC_CREATEMOSAICLAYOUT:

. Following are the parameters for this index, and values prescribed.

Field Name Description Values

nLayoutId Mosaic layout ID 0

nNumWindows Number of windows in mosaic 1

nDisChannelNum Display channel 0

sMosaicWinFmt
. winStartX

Horizontal start 0 - 1920

sMosaicWinFmt
. winStartY

Vertical start 0 - 1080

sMosaicWinFmt
. winWidth

Width in pixels 0 - 1920

sMosaicWinFmt
. winHeight

Number of lines in a window 0 - 1080

sMosaicWinFmt
. pitch.VFDC_YU
V_INT_ADDR_

Pitch in bytes for each of the sub-
window buffers

Width * 2

sMosaicWinFmt
. dataFormat

Data format for window VFDC_DF_YUV422I_Y
UYV

sMosaicWinFmt
. bpp

Bits per pixels for each window VFDC_BPP_BITS16

sMosaicWinFmt
. priority

Window priority in case of
overlapping windows

0

 21

3) VFDC Index Parameters – These are VFDC specific parameters, which are
configured according to the required application use case.

 OMX Index : OMX_TI_IndexParamVFDCDriverInstId
Decription: set/select the disply path driver ID as well as the VENC display
mode.

Field Name Description Values

nDrvInstID The physical output port for a
VFDC instance. This decides
display is on HDMI or
HDDAC or SD.

0 = VPS_DISP_INST_BP0

1 = VPS_DISP_INST_BP1

2 = VPS_DISP_INST_SEC1

eDispVencMode The video output format OMX_DC_MODE_1080P_60

OMX_DC_MODE_720P_60

OMX_DC_MODE_1080I_60

OMX_DC_MODE_1080P_30

Default properties :

Field Name Description Values
nDrvInst Driver

Instance ID
VPS_DISP_INST_BP0, VPS_DISP_INST_BP1,
VPS_DISP_INST_SEC1

eBufAllocPref Buffer
allocator
preferences on
this port

OMX_BASE_BUFFER_ALLOCATION_PREFERENCE_DEFAULT

bReadOnlyBuffers buffers on this
port will be
read only

OMX_TRUE

nWaterMark Watermark
level on each
port

1

eBufMemoryType Buffer memory
type

OMX_BUFFER_MEMORY_DEFAULT

hBufHeapPerPort
eDataAccessMode Whether frame

mode or
stream mode
data

OMX_BASE_DATA_ACCESS_MODE_FRAME

bDMAAccessedBuffer Whether to
access data
buffers via
DMA.

OMX_FALSE

pMetaDataFieldTypesArr NULL

 22

nNumMetaDataFields 0

 23

2.2 Video Frame Capture Component (VFCC)

Video frame capture component takes the input from the external sources such as cameras,
DVD players, TVP etc and puts the capture images in the memory. VFCC is an optimized
media controller capture component for DM816X, which can address the broad
market/specific customer requirements. The VFCC component is a source component that
has omx output ports but no input ports. The job of the VFCC is to capture the frames
provided to it through the video input ports (VIP) on the DM816x.

The DM816x contains 2 VIP ports – VIP1 and VIP2 that supports max. 24-bit interfaces.
Each of the ports can be re-configured as two 8 bit VIP ports – in that case, these ports are
named VIP1A, VIP1B, VIP2A and VIP2B. The SW model is to normally create instance of
the VFCC component for each VIP PORT. Since DM816x allows up to 4 VIP ports, the IL
client can instantiate up to 4 VFCC components with configuration to use specific VIP port.

The capture component is implemented as follows. A periodic timer wakes up a timer
interrupt service routine that checks all video ports for available captured buffers and issues
a call back function that posts an event. The posted event triggers the active processing
thread of the VFCC. When activated, the component thread de-queue the captured buffers
and subsequently queues a new set of buffers from the output port into the capture driver.
The frequency of the periodic timer is configurable. Also, the calling back option of the driver
is configurable and can be either unconditional or on data availability.

DM816x also supports non-muxed video. In this case, each video port (In the case of 8b
configuration: VIP1A, VIP1B, VIP2A, VIP2B or in the case of 16/24b configuration: VIP1 and
VIP2 capture the video from a single camera input. Note that it is possible for VIP1 to be
configured as 8b – i.e. split into VIP1A and VIP1B while VIP2 remains a single 16/24b port.
Likewise it is possible for VIP2 to be configured as 8b – i.e. split into VIP2A and VIP2B while
VIP1 remains a single 16/24b port.

OMX component implementation on media controller and APIs has been available on
A8/Linux

Features supported

• Input Video Source Formats
§ YUV422 8-bit embedded sync mode
§ YUV422 16-bit embedded sync mode
§ YUV422 8-bit 2x/4x pixel multiplxed mode
§ YUV422 8-bit 4x line multiplexed mode

• Output Video formats
§ YUV422 YUYV interleaved format
§ YUV420 Semi-planer format

• In-line video processing features

§ Chroma-down sampling

• Other features

§ multi-port capture on VIP0 & VIP1 (Port A, Port B), with ability to configure.
§ Interlaced as well as progressive capture

§ Non-multiplexed capture upto 1080P60 (1920x1080) resolution Multi-
channel - upto 16CH D1 (NTSC/PAL) using 4 VIP ports (VIP0/A, VIP0/B,
VIP1/A, VIP1/B)

§ Per frame info to user like - field ID, captured frame width x height,
timestamp, logical channel ID

§ For YUV input, optional chroma downsampling is supported

 24

§ Per channel frame-dropping. Example, for a 60fps video source, 30fps,
15fps, 7fps capture

Input to Output Combinations support

Input Format Output format

YUV422 8/16-bit
embedded sync
mode

YUV422 YUYV interleaved
format (optionally scaled)

YUV420 Semi-planer format
(optionally scaled)

YUV422 8/16-bit
embedded sync
mode -
MULTI-CH modes -
pixel mux, line mux

YUV422 YUYV interleaved
format
(SCALING, CHR_DS, CSC NOT
SUPPORTED in MULTI-CH
modes)

Configuration

Control interface provides the necessary means of controlling mechanism for an
individual component. This interface provides a set of functions to manage the
Capture component instances, like creation, deletion etc, function to connect the
Capture component to specific data interface, functions to control & configure and
functions to query and receive different types of statistics, diagnostics and state
related information.

All these control mechanism to the Capture component is through OpenMAX core sending
control messages to capture module. On processing the message capture module may
respond with the acknowledgements with the result of processing. VFCC configuration
parameters are categorized into 2 different classifications:

1. OMX Core Parameters – These are OMX mandatory base class parameters that
must be initialized prior to requesting the component instance handle.

Index – OMX_IndexParamPortDefinition

Following fields can be modified for above index.

Field Name Description Values

format.video.nFrameWidth Number of columns for
display

 Integer value of range

16 to 1920

format.video.nFrameHeigh
t

Number of lines for
display

Integer value of range

16 to 1080

format.video.eColorFormat Format of output buffer OMX_COLOR_FormatYUV420S
emiPlanar

OMX_COLOR_FormatYCbYCr

nBufferCountActual Number of input buffers Integer value

 25

Min = 5, Max 32

format.video.nStride Pitch of video data For 420 capture – Width

For 422 capture - 2* Width

nBufferSize Size of the input buffer For 420 -width * Height * 3/2

For 422 – Stride * Height

2. VFCC Index Parameters - These are VFCC class specific parameters, which are
configured according to the required application use case. These parameters are
accessed using a index and field_name combination.

 OMX Index : OMX_TI_IndexParamVFCCHwPortID

Field Name Description Values

eHwPortId The Video Input Interface from
where capture image/video is
obtained.

OMX_VIDEO_Capture
HWPortVIP1_PORTA

OMX_VIDEO_Capture
HWPortVIP2_PORTA

OMX Index : OMX_TI_IndexParamVFCCHwPortProperties

Field Name Description Values

eCaptMode Multiplex Mode OMX_VIDEO_CaptureModeSC_NON_MUX

OMX_VIDEO_CaptureModeMC_LINE_MUX

eVifMode Multiplex Mode OMX_VIDEO_CaptureVifMode_08BIT

OMX_VIDEO_CaptureVifMode_16BIT

OMX_VIDEO_CaptureVifMode_24BIT

eInColorForm
at

 OMX_COLOR_FormatYCbYCr

eScanType Video scan type OMX_VIDEO_CaptureScanTypeProgressive

nMaxWidth MAX Capture width 1920

nMaxHeight Max capture height 1080

nMaxChnlsP Max num 1

 26

erHwPort channels/handle

Default properties :

Field Name Description Values
nDrvInst Driver

Instance ID
VPS_CAPT_INST_VIP_ALL

eBufAllocPref Buffer
allocator
preferences
on this port

OMX_BASE_BUFFER_ALLOCATION_PREFERENCE_DEFAULT

bReadOnlyBuffers buffers on
this port will
be read only

OMX_TRUE

nWaterMark Watermark
level on
each port

1

eBufMemoryType Buffer
memory
type

OMX_BUFFER_MEMORY_DEFAULT

hBufHeapPerPort
eDataAccessMode Whether

frame mode
or stream
mode data

OMX_BASE_DATA_ACCESS_MODE_FRAME

bDMAAccessedBuffer Whether to
access data
buffers via
DMA.

OMX_FALSE

pMetaDataFieldTypesArr NULL
nNumMetaDataFields 0

 27

Video Frame Processing Component (VFPC)

Video frame processing component takes the input from the memory processes the input
like scale the image, chroma up samples the image and puts it back to the memory. The
VFPC components are generic components has both input and output OMX ports.
Various memory to memory operations such as noise filtering, scaling, deinterlacing etc
operations are performed by this component. VFPC has the capability to generate single
or multiple outputs. VFPC is an active component and the data processing thread wakes
up due to either data availability at the input side or due to the periodic wake ups. On
getting callbacks from the driver, the component de-queue all the buffers from the driver
and frees the input buffers.

§ OMX component implementation on media controller and APIs has been
available on A8/Linux

§ VFPC could be opened multiple times – supports multiple handles (N) for the
same component - Each handle can have different configuration

§ VFPC supports queuing of input request from multiple sources.

§ Also, either on data notification or periodically the component provides the next
set of buffers to the HW for processing

The following VFPC components are released in the package

2.2.1 VFPC-Scalar (SC5):

Features supported for VFPC-SC5

§ Scaling up to maximum 1920 pixels in horizontal direction & 1080 pixels in
the vertical direction

§ Downscaling up to 1/8x.

§ Supports only a fixed standard set of coefficients for the scalar.

§ Chroma up sampling from YUV420 semiplanar to YUYV422 interleaved format.

§ Supports horizontal and vertical cropping of the image before scaling.

§ Supports different types of scalar like poly phase and running average.

§ Multi-channel support – up to 16 channels per handle

§ Support dynamic resolution change on both input and output side

Limitation

§ Interlaced image at input or output not supported.

§ Application loading coefficients is not supported

§ No configuration support for SC algorithms such as poly-phase or running
average (Supported only Fixed configuration)

 28

§ Pitch of input and output buffer should be multiple of 16.

Default properties of SC component

Field Name Description Values
nDrvInst Driver Instance ID VPS_M2M_INST_SEC0_SC5_WB2
pDriverProperties-
>nNumCurInputBufPerProcess

Number of input
buffers required by
the driver in each
process call.

OMX_VFPC_INDTXSCWB_NUM_CURRE
NT_INPUT_FRAMES_PER_PROCESS (1)

pDriverProperties-
>nNumHistoryBufPerProcess

Number of input
buffers required by
the driver in each
process call. This
number of history

OMX_VFPC_INDTXSCWB_NUM_HISTOR
Y_FRAMES_PER_PROCESS (0)

pDriverProperties-
>nNumOutputPerProcess

Number of output
buffers required by
the driver in each
process call

OMX_VFPC_INDTXSCWB_NUM_OUTPU
T_FRAMES_PER_PROCESS (1)

pDriverProperties-
>auOutputSubSampleFactor[0]

Indicates default
subsampling info
that is to applied .
Subsampling
may be 1/2, 1/4 etc

OMX_VFPC_INDTXSCWB_SUBSAMPLE
FACTOR_OUTPUT0 (1)

pDriverProperties-
>sInBufProp[0].eColorFormat

The Color format of
the I/O buf

OMX_COLOR_FormatYUV420SemiPlanar

pDriverProperties-
>sInBufProp[0].nMaxFrameHeight

Max frame height
of the I/O buf

OMX_VFPC_DEFAULT_INPUT_FRAME_
HEIGHT (1080)

pDriverProperties-
>sInBufProp[0].nMaxFrameWidth

Max frame width of
the I/O buf

OMX_VFPC_DEFAULT_INPUT_FRAME_
WIDTH (1920)

pDriverProperties-
>sInBufProp[0].eBufferMemType

The MemType of
the I/O buf - Tled
Vs Non-Tiled

OMX_BUFFER_MEMORY_TILED_8BIT

pDriverProperties-
>sOutBufProp[0].eColorFormat

The Color format of
the I/O buf

OMX_COLOR_FormatYCbYCr

pDriverProperties-
>sOutBufProp[0].nMaxFrameHeight

Max frame height
of the I/O buf

OMX_VFPC_DEFAULT_OUTPUT_FRAM
E_HEIGHT (1080)

pDriverProperties-
>sOutBufProp[0].nMaxFrameWidth

Max frame width of
the I/O buf

OMX_VFPC_DEFAULT_OUTPUT_FRAM
E_WIDTH (1920)

pDriverProperties-
>sOutBufProp[0].eBufferMemType

The MemType of
the I/O buf - Tled
Vs Non-Tiled

OMX_BUFFER_MEMORY_DEFAULT

2.2.2 VFPC-Noise Filter (NF)

Features Supported

§ Input formats: YUV422, non-tiled memory, YUYV interleaved data - this is the
only input format supported by the NSF hardware

§ Output formats: YUV420T, tiled memory, YUV420 semi-planer data - this is the
only output format supported by the NSF hardware

 29

§ Tiler support for YUV420 output, YUV420 previous filtered input

§ Multi-channel support – up to 16 channels per handle

§ Configurable input size (width, height, startX, startY, pitch) per channel

§ Output size is always same as input size

§ Configurable noise filter processing parameters like filter strength, filter threshold
per channel

§ The NF hardware supports spatial as well as temporal noise filtering.

§ Configurable noise filter operation mode per channel like temporal NF bypass,
spatial NF bypass, all NF bypass, i.e. only chroma downsample

§ When temporal noise filtering is enabled, the hardware needs the previous noise
filtered output as one of the inputs.

§ When temporal noise filter is disabled (OMX_NSF_BYPASS_MODE_SNF_TNF),
this previous noise filtered frame is not required. It is possible to bypass both
spatial as well as temporal noise filter

§ (OMX_NSF_BYPASS_MODE_SNF_TNF), i.e. NF can be used for only YUV422
to YUV420 chroma down-sampling. In this case too, previous noise filtered frame
is not required

Limitation

§ Slice based NF is not supported.

§ Width/pitch/height should be multiple of 32 pixels.

Default values :
Field Name Description Values
nDrvInst Driver Instance ID VPS_M2M_INST_NF0
pDriverProperties-
>nNumCurInputBufPerProcess

Number of input buffers
required by the driver in
each process call.

OMX_VFPC_NF_NUM_CUR_INPUTBUF
S (1)

pDriverProperties-
>nNumHistoryBufPerProcess

Number of input buffers
required by the driver in
each process call. This
number of history

OMX_VFPC_NF_HIS_INPUTBUFS (1)

pDriverProperties-
>sHistoryProp[0].nFrameListInde
x

The index into the
frameList that will be
used as history buffer

0

pDriverProperties-
>sHistoryProp[0].eFrameListTyp
e

The enum identifying if
nFrameListIndex refers
to the inFrameList or the
outFrameList

OMX_VFPC_FRAMELIST_TYPE_OUTP
UT

pDriverProperties-
>nNumOutputPerProcess

Number of output buffers
required by
the driver in each
process call

OMX_VFPC_NF_NUM_OUTBUFS (1)

pDriverProperties-
>auOutputSubSampleFactor[0]

Indicates default
subsampling info
that is to applied .

OMX_VFPC_NF_SUBSAMPLEFACTOR_
OUTPUT0 (1)

 30

Subsampling
may be 1/2, 1/4 etc

pDriverProperties-
>sInBufProp[0].eColorFormat

The Color format of the
I/O buf

OMX_COLOR_FormatYCbYCr

pDriverProperties-
>sInBufProp[0].nMaxFrameHeig
ht

Max frame height of the
I/O buf

OMX_VFPC_DEFAULT_INPUT_FRAME_
HEIGHT (1080)

pDriverProperties-
>sInBufProp[0].nMaxFrameWidt
h

Max frame width of the
I/O buf

OMX_VFPC_DEFAULT_INPUT_FRAME_
WIDTH (1920)

pDriverProperties-
>sInBufProp[0].eBufferMemType

The MemType of the I/O
buf - Tled Vs Non-Tiled

OMX_BUFFER_MEMORY_DEFAULT

pDriverProperties-
>sOutBufProp[0].nMaxFrameHei
ght

Max frame height of the
I/O buf

OMX_VFPC_DEFAULT_INPUT_FRAME_
HEIGHT (1080)

pDriverProperties-
>sOutBufProp[0].nMaxFrameWid
th

Max frame width of the
I/O buf

OMX_VFPC_DEFAULT_INPUT_FRAME_
WIDTH (1920)

pDriverProperties-
>sOutBufProp[0].eColorFormat

The Color format of the
I/O buf

OMX_COLOR_FormatYUV420SemiPlana
r

pDriverProperties-
>sOutBufProp[0].eBufferMemTy
pe

The MemType of the I/O
buf - Tled Vs Non-Tiled

OMX_BUFFER_MEMORY_TILED_8BIT

2.2.3 VFPC-DEI HQ/MQ Dual Out

VFPC DEI Dual Output Paths: As shown in below figures, the VFPC DEI takes in
YUYV422/YUV420 interlaced/progressive input via the DEI path and provides two scaled
version of the deinterlaced/bypassed outputs - one via writeback path 0/1 and another via
VIP 0/1.

Features Supported

• Input Formats
§ YUV422 Interleaved
§ YUV420 Semi-Planar

• Output Formats
§ YUV422 Interleaved on WB0/1
§ YUV422 Interleaved on VIP0/1
§ YUV420 Semi-Planar on VIP0/1
§ YUV420 Semi-Planar Tiled on VIP0/1

• Other Features
§ DEI in deinterlacing mode
§ DEI in progressive bypass mode
§ Line averaging and field averaging mode of DEI operation
§ Progressive TNR operation in DEIH
§ Optional scaling using SC1, SC2, SC3 and SC4
§ Scaling upto 1920 maximum pixels in horizontal direction
§ Different types of scalar like poly phase and running average
§ Horizontal and vertical cropping of the image before scaling
§ Enable/disable of DRN

 31

§ Frame drop feature on WB0/1 and VIP0/1 outputs to enable load balancing
§ Multi-channel (up to 8 channels per instance)

• Runtime Cofiguration
§ Output resolution change on WB0/1
§ Output resolution change on VIP0/1

Configuration

Control interface provides the necessary means of controlling mechanism for an
individual component. This interface provides a set of functions to manage the Scalar
component instances, like creation, deletion etc, function to connect the Scalar
component to specific data interface, functions to control & configure and functions to
query and receive different types of statistics, diagnostics and state related information.

All these control mechanism to the VFPC class component is through OpenMAX core
sending control messages to scalar module. On processing the message frame
processing module may respond with the acknowledgements with the result of
processing. VFPC component(s) implement the OpenMAX APIS for these control
messages such as,

Configuration parameters are categorized into 2 different classifications:

1. OMX Core Parameters – These are OMX mandatory base class parameters that
must be initialized prior to requesting the component instance handle.

OMX Index : OMX_IndexParamPortDefinition

Field Name Description Values

format.video.nFrameWidth Number of columns for
display

 Integer value of range

16 to 1920

format.video.nFrameHeight Number of lines for displayInteger value of range

16 to 1080

format.video.eColorFormat Format of output buffer OMX_COLOR_FormatYUV420
SemiPlanar

OMX_COLOR_FormatYCbYCr

nBufferCountActual Number of input buffers Integer value

Min = 5

format.video.nStride Pitch of video data For 420– Width

For 422 - 2* Width

nBufferSize Size of the input buffer For 420 -width * Height * 3/2

For 422 – Stride * Height

 32

2. VFPC Index Parameters - These are VFPC class specific parameters, which are
configured according to the required application use case. These parameters are
accessed using a index and field_name combination.

OMX Index : OMX_TI_IndexParamVFPCNumChPerHandle

OMX_PARAM_VFPC_NUMCHANNELPERHANDLE: Enumerates the number of
channels the VFPC-SC component processes

Field Name Description Values

nNumChannelsPerHandle Number of channels to be
processed

 1 (All VFPC class components
support only 1 channel per
instance)

 Dynamic configuration

API: OMX_SetConfig
 OMX Index : OMX_TI_IndexConfigVidChResolution

Description: API to Configure the resolution related parameters of a specific
channel (port).
Assumption - Any driver channel of VFPC module will have a max of two input
ports and a max of two output ports

Field Name Description Values

eDir Indicates which end of the
channel the configuration
values apply to.

OMX_DirInput

OMX_DirOutput

nChId Indicates the channel index
for which this configuration
values apply.

0 – All VFPC components
support 1 channel per instance

Frm0Width Width of the frame at the first
port corresponding to the
channel

Integer value of range

16 to 1920

Frm0Height Height of the frame at the
first port corresponding to the
channel.

Integer value of range

16 to 1920

Frm0Pitch Height of the frame at the
first port corresponding to the
channel.

For 420– Width

For 422 - 2* Width

Frm1Width Width of the frame at
second port corresponding to
the channel

Integer value of range

16 to 1920 (Currently
supported for output ports in

 33

VFPC-DEIM/H components)

Frm1Height Height of the frame at the
second port corresponding to
the channel.

Integer value of range

16 to 1920 (Currently
supported for output ports in
VFPC-DEIM/H components)

Frm1Pitch Height of the frame at the
second port corresponding to
the channel.

For 420– Width

For 422 - 2* Width

FrmStartX Horizontal StartOffset Integer value of range

0 to width (Applies only at the
input end of the channel)

FrmStartY Vertical StartOffset Integer value of range

0 to height(Applies only at the
input end of the channel)

FrmCropWidth Crop Width Integer value of range

0 to width - FrmStartX (Applies
only at the input end of the
channel)

FrmCropHeight Crop Height Integer value of range

0 to height - FrmStartY(Applies
only at the input end of the
channel)

OMX Index : OMX_TI_IndexConfigAlgEnable

Description: Flag to enable/disable the Algorithm/IP

Field
Name

Description Values

nChId Indicates the channel index for which this
configuration values apply.

0 – All VFPC components support 1
channel per instance

bAlgBypassIf set to true, the HW IP is set in bypass. 0 – Indicates that the Bypass is
disabled, HW IP is enabled

1 – Indicates that the Bypass is
enabled, HW IP is used.

 OMX Index : OMX_TI_IndexConfigSubSamplingFactor

 34

Description: To set the Sub sampling factor of a specific port. This is used to drop
the output frame rate of the component in the order of 1/2, 1/3, 1/4 etc. Please
not that validated only for 1/2(reduce to half) configuration. The sub sampling
factor shall be an integer. For example: 1 – no drop, 2 – alternative frame drops
etc.

Field Name Description Values

nPortIndex Index of the concerned
output port.

0 or 1

nSubSamplingFactor Reduxtion of output frame
rate in the order of (1/
nSubSamplingFactor)

1 – no subsampling

2 – subsampling by half (Only
tested configuration)

Default Values of omxVfpcDriverProperties_t for
OMX_VFPC_DEIDUALOUT_MEDIUM_COMP_NAME component.

Field Name Description Values
nDrvInst Driver Instance ID TI_814x:VPS_M2M_INST_MAIN_DEI_SC1_S

C3_WB0_VIP0
TI_816x:
VPS_M2M_INST_AUX_DEI_SC2_SC4_WB1
_VIP1

pDriverProperties-
>nNumCurInputBufPerProcess

Number of input
buffers required by the
driver in each process
call.

OMX_VFPC_DEIDUALOUT_MEDIUM_NUM_
CURRENT_INPUT_FRAMES_PER_PROCES
S (1)

pDriverProperties-
>nNumHistoryBufPerProcess

Number of input
buffers required by the
driver in each process
call. This number of
history buffers
required per
process call

OMX_VFPC_DEIDUALOUT_MEDIUM_NUM_
HISTORY_FRAMES_PER_PROCESS (0)

pDriverProperties-
>nNumOutputPerProcess

Number of output
buffers required by
the driver in each
process call

OMX_VFPC_DEIDUALOUT_MEDIUM_NUM_
OUTPUT_FRAMES_PER_PROCESS (2)

 pDriverProperties-
>auOutputSubSampleFactor[0]

Indicates default
subsampling info
that is to applied .
Subsampling
may be 1/2, 1/4 etc.

OMX_VFPC_DEIDUALOUT_SUBSAMPLEFA
CTOR_OUTPUT0 (2)

pDriverProperties-
>auOutputSubSampleFactor[1]

Indicates default
subsampling info
that is to applied .

OMX_VFPC_DEIDUALOUT_SUBSAMPLEFA
CTOR_OUTPUT1 (2)

 35

Subsampling
may be 1/2, 1/4 etc

pDriverProperties-
>sHistoryProp[0].nFrameListIn
dex

The index into the
frameList that will be
used as history buffer

0

pDriverProperties-
>sHistoryProp[0].eFrameListTy
pe

The enum identifying if
nFrameListIndex
refers to the
inFrameList or the
outFrameList

OMX_VFPC_FRAMELIST_TYPE_INPUT

pDriverProperties-
>sInBufProp[0].eColorFormat

The Color format of
the I/O buf

OMX_COLOR_FormatYUV420SemiPlanar

pDriverProperties-
>sInBufProp[0].nMaxFrameWi
dth

Max frame width of
the I/O buf

OMX_VFPC_DEFAULT_INPUT_FRAME_WI
DTH (1920)

pDriverProperties-
>sInBufProp[0].nMaxFrameHei
ght

Max frame height of
the I/O buf

OMX_VFPC_DEFAULT_INPUT_FRAME_HEI
GHT (1080)

pDriverProperties-
>sInBufProp[0].eBufferMemTy
pe

The MemType of the
I/O buf - Tled Vs Non-
Tiled

OMX_BUFFER_MEMORY_TILED_8BIT

 pDriverProperties-
>sOutBufProp[0].eColorFormat

The Color format of
the I/O buf

OMX_COLOR_FormatYCbYCr

pDriverProperties-
>sOutBufProp[0].nMaxFrame
Width

Max frame width of
the I/O buf

OMX_VFPC_DEFAULT_OUTPUT_FRAME_
WIDTH (1920)

pDriverProperties-
>sOutBufProp[0].nMaxFrameH
eight

Max frame height of
the I/O buf

OMX_VFPC_DEFAULT_OUTPUT_FRAME_
HEIGHT (1080)

pDriverProperties-
>sOutBufProp[0].eBufferMemT
ype

The MemType of the
I/O buf - Tled Vs Non-
Tiled

OMX_BUFFER_MEMORY_DEFAULT

pDriverProperties-
>sOutBufProp[1].eColorFormat

The Color format of
the I/O buf

OMX_COLOR_FormatYUV420SemiPlanar

pDriverProperties-
>sOutBufProp[1].nMaxFrame
Width

Max frame width of
the I/O buf

OMX_VFPC_DEFAULT_OUTPUT_FRAME_
WIDTH (1920)

pDriverProperties-
>sOutBufProp[1].nMaxFrameH
eight

Max frame height of
the I/O buf

OMX_VFPC_DEFAULT_OUTPUT_FRAME_
HEIGHT (1080)

pDriverProperties-
>sOutBufProp[1].eBufferMemT
ype

The MemType of the
I/O buf - Tled Vs Non-
Tiled

OMX_BUFFER_MEMORY_TILED_8BIT

Default Values of omxVfpcDriverProperties_t for OMX_VFPC_DEIDUALOUT_HIGH_COMP_NAME
component.

Field Name Description Values

nDrvInst Driver Instance ID TI_816x:VPS_M2M_INST_MAIN_DEIH_SC1_SC3_
WB0_VIP0

pDriverProperties- Number of input OMX_VFPC_DEIDUALOUT_MEDIUM_NUM_CURR

 36

>nNumCurInputBufPerPro
cess

buffers required by
the driver in each
process call.

ENT_INPUT_FRAMES_PER_PROCESS (1)

pDriverProperties-
>nNumHistoryBufPerProce
ss

Number of input
buffers required by
the driver in each
process call. This
number of history
buffers required per
process call

OMX_VFPC_DEIDUALOUT_MEDIUM_NUM_HISTO
RY_FRAMES_PER_PROCESS (0)

pDriverProperties-
>nNumOutputPerProcess

Number of output
buffers required by
the driver in each
process call

OMX_VFPC_DEIDUALOUT_MEDIUM_NUM_OUTP
UT_FRAMES_PER_PROCESS (2)

pDriverProperties-
>auOutputSubSampleFact
or[0]

Indicates default
subsampling info
that is to applied .
Subsampling

may be 1/2, 1/4 etc

OMX_VFPC_DEIDUALOUT_SUBSAMPLEFACTOR
_OUTPUT0 (2)

pDriverProperties-
>auOutputSubSampleFact
or[1]

Indicates default
subsampling info
that is to applied .
Subsampling

may be 1/2, 1/4 etc

OMX_VFPC_DEIDUALOUT_SUBSAMPLEFACTOR
_OUTPUT1 (2)

pDriverProperties-
>sHistoryProp[0].nFrameLi
stIndex

The index into the
frameList that will
be used as history
buffer

0

pDriverProperties-
>sHistoryProp[0].eFrameLi
stType

The enum
identifying if
nFrameListIndex
refers to the
inFrameList or the
outFrameList

OMX_VFPC_FRAMELIST_TYPE_INPUT

pDriverProperties-
>sInBufProp[0].eColorFor
mat

The Color format of
the I/O buf

OMX_COLOR_FormatYUV420SemiPlanar

pDriverProperties-
>sInBufProp[0].nMaxFram
eWidth

Max frame width of
the I/O buf

OMX_VFPC_DEFAULT_INPUT_FRAME_WIDTH
(1920)

pDriverProperties-
>sInBufProp[0].nMaxFram
eHeight

Max frame height
of the I/O buf

OMX_VFPC_DEFAULT_INPUT_FRAME_HEIGHT
(1080)

pDriverProperties-
>sInBufProp[0].eBufferMe
mType

The MemType of
the I/O buf - Tled
Vs Non-Tiled

OMX_BUFFER_MEMORY_TILED_8BIT

pDriverProperties-
>sOutBufProp[0].eColorFo
rmat

The Color format of
the I/O buf

OMX_COLOR_FormatYCbYCr

pDriverProperties-
>sOutBufProp[0].nMaxFra
meWidth

Max frame width of
the I/O buf

OMX_VFPC_DEFAULT_OUTPUT_FRAME_WIDTH
(1920)

pDriverProperties-
>sOutBufProp[0].nMaxFra
meHeight

Max frame height
of the I/O buf

OMX_VFPC_DEFAULT_OUTPUT_FRAME_HEIGHT
(1080)

 37

pDriverProperties-
>sOutBufProp[0].eBufferM
emType

The MemType of
the I/O buf - Tled
Vs Non-Tiled

OMX_BUFFER_MEMORY_DEFAULT

pDriverProperties-
>sOutBufProp[1].eColorFo
rmat

The Color format of
the I/O buf

OMX_COLOR_FormatYUV420SemiPlanar

pDriverProperties-
>sOutBufProp[1].nMaxFra
meWidth

Max frame width of
the I/O buf

OMX_VFPC_DEFAULT_OUTPUT_FRAME_WIDTH
(1920)

pDriverProperties-
>sOutBufProp[1].nMaxFra
meHeight

Max frame height
of the I/O buf

OMX_VFPC_DEFAULT_OUTPUT_FRAME_HEIGHT
(1080)

pDriverProperties-
>sOutBufProp[1].eBufferM
emType

The MemType of
the I/O buf - Tled
Vs Non-Tiled

OMX_BUFFER_MEMORY_TILED_8BIT

2.3 Control Components (CTRL)

The CTRL component is a control component that has no omx input/output ports.
This is not a data processing component. The job of the CTRL is to configure &
start the control functionalities such as external video decoder (TVP, SIL etc) and
display controller configurations on the DM816x.

The following CTRL components are released in the package

1. CTRL- TVP (External Video Decoder):

This component supports the configuration & control of external video decoders
such as TVP 5158 (muxed capture), TVP 7002 (non muxed 1080i60 capture,
component input), SIL 9135 (non muxed 1080P60 capture, HDMI input).

NOTE: It’s preferred to move OMX.TI.VPSSM3.CTRL.TVP componet to loaded
to idle state before OMX.TI.VPSSM3.VFCC move to idle. Also move
OMX.TI.VPSSM3.CTRL.TVP componet to execute to idle state after
OMX.TI.VPSSM3.VFCC move to idle

2. CTRL- DC (Display Controller):

This component supports the Display controller configuration for various display
paths in side the DM816x display controller HW

Supports configuring the following display controller paths

1. BP0 to on-chip HDMI display

2. BP1 to on-chip DVO2 and route to off-chip HDMI display

3. BP1 to on-chip HD-DAC

Primary display is always on-chip HDMI

 38

Secondary one is HD-DAC.

 Configuration

 OMX Index : OMX_TI_IndexParamCTRLVidDecInfo

Description: Configure the video decoder parameters

OMX_CTRL_VIDEO_DECODER_STD: Defines the supported video
decoder standards.

Field Name Description Values

nPortIndex Index of the concerned output port. 0 or 1

videoStandard

Video Standard OMX_VIDEO_DECODER_STD_1080P_60

OMX_VIDEO_DECODER_STD_1080I_60

OMX_VIDEO_DECODER_STD_AUTO_DETEC
T

videoDecoderId Decoder interface on board OMX_VID_DEC_TVP7002_DRV

OMX_VID_DEC_SII9135_DRV

OMX_VID_DEC_TVP5158_DRV

Features Supported

§ Connecting multiplexers, VCOMP, CIG and COMP modules statically and
dynamically (but not at run time, i.e. after display is started)

§ Supports setting modes and synchronizing multiple VENCs

§ All HD VENCs support upto 720p60, 1080p30, 1080i60 and 1080p60
modes. Other modes are not supported.

Limitation

§ Does not support configuring different modes on the tied VENCs like
1080P@60 FPS on DVO1 and 720P@60 FPS on DV02 could not be tied
(synchronized)

§ Run time configuration of VCOMP, CIG and blenders is not supported

§ CPROC features are not supported. CPROC is currently put in simple
bypass mode - does only color space conversion. Note that CPROC
module is available only on TI816X.

§ Run time switching of input path at the multiplexer and graphics
enable/disable at the COMP is not supported.

§ Runtime configuration of VCOMP, CIG and Blenders is not supported

 39

2.4 Video Decoder Component (VDEC)

The VDEC component is a video decode component that has one input port and
one output port. The job of the VDEC is to decode the encoded frames provided to
it. In other words, it encapsulates the Video Decoder.

The following should be noted about the VDEC component –

• Supports H264, MPEG4, H263 and MPEG2 decode. It does not support
any other compression format

• Supports only frame level decoding. Encoded data should be given as a
whole frame, i.e, stream parsing and marking frame boundaries needs to
happen outside the component. Slice based decoding is not supported

• Supports decoding of only progressive content. Interlaced content decoding
is not supported

• Supports codec supported color format. Format supported in this release is
OMX_COLOR_FormatYUV420PackedSemiPlanar. It is based on decoder’s
capability.

• Does not support run time configuration of its dynamic parameters using
the OMX_GetConfig and OMX_SetConfig apis

• Without processing at the most 8 buffers can be queued up.

• Video decoder o/p buffers have padding and alignment requirement.
Padding is required both in Horizontal (PadX) and Vertical (PadY) direction.
Given below is a computation of the buffer size for 420 o/p buffers of
VDEC. This is calculated as:

{ALIGN((Width + 2 * PadX), 128)} * {ALIGN(height, 16) + 4 * PadY} * (3 / 2)

Where ALIGN(value, alignment) is a macro that ensures the given ‘value’ is
adjusted to the next multiple of ‘alignment’. The user should set the
appropriate buffer size in the VDEC output port parameters based on the
above formula. The table below documents the Horizontal (PadX) and
Vertical (PadY) padding required for various compression formats
supported by VDEC. The application should allocate output buffers taking
this into consideration.

Compression Format Horizontal Padding
(PadX)

Vertical Padding
(PadY)

H264 32 24

MPEG4 16 16

H263 16 16

MPEG2 8 8

VC1 32 40

MJPEG 0 0

 40

The stride (or pitch) of the output frame generated by VDEC also varies
based on the compression format. The table below summarizes the stride
for various compression formats. This is expressed as a function of Width
(resolution width) and PadX (padding in horizontal direction).

Compression Format Horizontal Padding
(PadX)

Stride (Pitch)

H264 32 (Width + (2 * PadX) +
127) & 0xFFFFFF80;

MPEG4 16 (Width + (2 * PadX) +
127) & 0xFFFFFF80

H263 16 (Width + (2 * PadX) +
127) & 0xFFFFFF80

MPEG2 8 (Width + 15) &
0xFFFFFFF0

VC1 32 (Width + (2 * PadX) +
127) & 0xFFFFFF80

MJPEG 0 (Width + 15) &
0xFFFFFFF0

Users are recommended to go through individual codec user guides for
more details.

For setting all the parameters supported by codec, two new indices have
been added, which allows complete structure of static and dynamic
parameters to be configured using codec standard static and dynamic
parameter structure. In the decode_display example static parameter
change code is provided.

For selecting the codec, compression format should be specified in
parameter setting using OMX_IndexParamPortDefinition. Please refer to
decode example.

For H264 - OMX_VIDEO_CodingAVC

For MPEG4 – OMX_VIDEO_CodingMPEG4

For MPEG2 - OMX_VIDEO_CodingMPEG2

For H263 - OMX_VIDEO_CodingH263

For VC1 - OMX_VIDEO_CodingWMV

2.5 Video Encoder Component (VENC)

The VENC component is a video encode component that has one input port and
one output port. The job of the VENC is to encode the raw frames provided to it. In
other words, it encapsulates the Video Encoder

The following should be noted about the VENC component –

 41

• Supports H264 and MPEG4 encode. It does not support any other
compression format.

• Supports only YUV420 semi planner input format (
OMX_COLOR_FormatYUV420PackedSemiPlanar)

• Supports encoding of I & P and B frames.

• Supports run time configuration of all dynamic parameters supported by the
codec using OMX_GetConfig and OMX_SetConfig apis

• Without processing at the most 8 buffers can be queued up.

• Does not support slice mode encoding

VENC – Setting & controlling parameters

As mentioned earlier, VENC supports run time configuration of its dynamic
parameters using the OMX_GetConfig & OMX_SetConfig apis. However, not all
standard OMX indices & associated CONFIG structures have been supported.
Those that are supported are mentioned in the table below. Note that
OMX_GetConfig returns the current settings whereas OMX_SetConfig is used to
apply the new settings.

eError = OMX_SetConfig(hComponent, OMX_IndexConfi gX,
(OMX_PTR) OMX_VIDEO_CONFIG_Y);

It is recommended to do a OMX_GetConfig call before the corresponding
OMX_SetConfig call in order to determine the current settings.

For selecting the codec type, compression format should be specified in parameter
setiing using OMX_IndexParamPortDefinition index. This is specified in following
wiki link. Encode example provided in SDK provides example for this.

For setting all the parameters supported by codec, two new indices have been
added, which allows complete structure of static and dynamic parameters to be
configured using codec standard static and dynamic parameter structure. Following
link has example of using these indices. For structure definition and parameters
settings, please refer the specific codec user guide.

http://processors.wiki.ti.com/index.php/VENC

Index OMX_IndexConfigX CONFIG structure
OMX_VIDEO_CONFIG_Y

Description Unit

OMX_IndexConfigVideoBitrate OMX_VIDEO_CONFIG_BITRATETYPE nEncodeBitrate is
the target bit rate
for the Video
Encoder.

Bits per second.
E.g.
nEncodeBitrate =
2000000 for bit
rate of 2 mbps

OMX_IndexConfigVideoFramerate OMX_CONFIG_FRAMERATETYPE xEncodeFramerate
is the target frame
rate for the Video

In Q16 as per
OMX
specifications. E.g,

http://processors.wiki.ti.com/index.php/VENC

 42

Encoder xEncodeFramerate
= 60*65536 for
frame rate of 60
fps

OMX_IndexConfigVideoAVCIntraPeriod OMX_VIDEO_CONFIG_AVCINTRAPERIOD nPFrames is the
number of P frames
between 2 I frames
(intraFrameInterval)

Any integer value.
Eg, nPFrames=29
results in an I
frame once every
30 frames

OMX_IndexConfigVideoIntraVOPRefresh OMX_CONFIG_INTRAREFRESHVOPTYPE IntraRefreshVOP =
TRUE forces an
IDR frame to be
generated by the
Video Encoder

OMX_TI_IndexConfigVideoDynamicParams OMX_VIDEO_CONFIG_DYNAMICPARAMS This is a custom
extension (not part
of OMX standard).
It encapsulates the
Video Encoder’s
dynamic
parameters
structure. It enables
setting the codec’s
dynamic
parameters directly.
See
OMX_TI_Video.h
for the definition of
this strcuture

2.6 Audio Decoder Component (ADEC)

The ADEC component is a audio decode component that has one input port and
one output port. The job of the ADEC is to decode the encoded frames provided to
it. In other words, it encapsulates the Audio Decoder.

The following should be noted about the ADEC component –

• Supports MP3 and AAC-LC decode. It does not support any other
compression format.

• Supports single input/output port with single input buffer and single output
buffer.

• Supports bit-stream bucket based decoding. Encoded data should be given
as a pool of 4KB input buffer, the component will consume x amount of
bytes required to decode a frame. Application will refill the buffer to
maintain again 4KB input buffer pool.

• Decoded output PCM is Stereo channels with 16-bit bit-precision per
sample. If the stream is mono, internal codec performs mono to stereo
conversion

• Does not support run time configuration of its dynamic parameters using
the OMX_GetConfig and OMX_SetConfig apis

 43

• In AAC-LC, raw data format is not supported.

2.7 Audio Encoder Component (AENC)

The AENC component is a audio encode component that has one input port and
one output port. The job of the AENC is to enode the audio PCM frames provided to
it. In other words, it encapsulates the Audio Encoder.

The following should be noted about the AENC component –

• Supports AAC-LC encode. It does not support any other compression
format

Chapter 3

API Reference

This section provided a description of the OpenMax components available on the
DM816x OpenMax Multimedia Sub-system.

General Information about OMX components

TI’s implementation of the DM816x OpenMax Multimedia Sub-system is based on
OpenMax IL v1.1.2. The OpenMax IL v1.1.2 specifications are included in this
release in the directory $OMXINSTALL/docs. This section supplements the
specifications with additional details on additional features/extensions/constraints of
TI’s implementation. The rest of this chapter will frequently cross reference sections
of the OpenMax v1.1.2 Specifications [2]. (appropriate section quoted in square
braces).

 44

General Information

The standard OpenMax APIs are located in the directory
$OMXINSTALLDIR/interfaces/openMaxv11.

Enumerations

The Enumerations used in our code are identical to those specified by the
specifications.

OpenMax IL APIs

The following is the list of OpenMax IL APIs and some notes on their
implementation status where appropriate.

OMX_ComponentNameEnum (cComponentName, nNameLength, nIndex)

The OMX_ComponentNameEnum method will enumerate through all the names of
recognized valid components in the system. This function is provided as a means to
detect all the components in the system run-time. There is no strict ordering to the
enumeration order of component names, although each name will only be
enumerated once. If the OMX core supports run-time installation of new
components, it is only required to detect newly installed components when the first
call to enumerate component names is made (i.e. when nIndex is 0x0).

The core should return from this call in 20 msec.

Parameters:

[out] cComponentName pointer to a null terminated string with the component
name. The names of the components are strings less than 127 bytes in length
plus the trailing null for a maximum size of 128 bytes. An example of a valid
component name is "OMX.TI.AUDIO.DSP.MIXER\0". Names are assigned by
the vendor, but shall start with "OMX." and then have the Vendor designation
next.
[in] nNameLength number of characters in the cComponentName string. With
all component name strings restricted to less than 128 characters (including the
trailing null) it is recomended that the caller provide a input string for the
cComponentName of 128 characters.
[in] nIndex number containing the enumeration index for the component.
Multiple calls to OMX_ComponentNameEnum with increasing values of nIndex
will enumerate through the component names in the system until
OMX_ErrorNoMore is returned. The value of nIndex is 0 to (N-1), where N is
the number of valid installed components in the system.

Returns:

OMX_ERRORTYPE If the command successfully executes, the return code will
be OMX_ErrorNone. When the value of nIndex exceeds the number of
components in the system minus 1, OMX_ErrorNoMore will be returned.
Otherwise the appropriate OMX error will be returned.

 45

OMX_Deinit (void)

The OMX_Deinit method is used to deinitialize the OMX core. It shall be the last call
made into OMX. In the event that the core determines that thare are components
loaded when this call is made, the core may return with an error rather than try to
unload the components.

The core should return from this call within 20 msec.

Returns:

OMX_ERRORTYPE If the command successfully executes, the return code will
be OMX_ErrorNone. Otherwise the appropriate OMX error will be returned.

OMX_FreeHandle (hComponent)

The OMX_FreeHandle method will free a handle allocated by the OMX_GetHandle
method. If the component reference count goes to zero, the component will be
unloaded from memory.

The core should return from this call within 20 msec when the component is in the
OMX_StateLoaded state.

Parameters:

[in] hComponent Handle of the component to be accessed. This is the
component handle returned by the call to the GetHandle function.

Returns:

OMX_ERRORTYPE If the command successfully executes, the return code will
be OMX_ErrorNone. Otherwise the appropriate OMX error will be returned.

OMX_GetComponentsOfRole (role, pNumComps, compNames)

[This API is not implemented in this release].

The OMX_GetComponentsOfRole method will return the number of components
that support the given role and (if the compNames field is non-NULL) the names of
those components. The call will fail if an insufficiently sized array of names is
supplied. To ensure the array is sufficiently sized the client should: first call this
function with the compNames field NULL to determine the number of component
names second call this function with the compNames field pointing to an array of
names allocated according to the number returned by the first call.

The core should return from this call within 5 msec.

Parameters:

[in] role This is generic standard component name consisting only of component
class name and the type within that class (e.g. 'audio_decoder.aac').
[inout] pNumComps This is used both as input and output.

If compNames is NULL, the input is ignored and the output specifies how many
components support the given role.

If compNames is not NULL, on input it bounds the size of the input structure and on
output, it specifies the number of components string names listed within the
compNames parameter.

Parameters:

[inout] compNames If NULL this field is ignored. If non-NULL this points to an
array of 128-byte strings which accepts a list of the names of all physical

 46

components that implement the specified standard component name. Each
name is NULL terminated. numComps indicates the number of names.

OMX_GetHandle (pHandle, cComponentName, pAppData, pCallBacks)

The OMX_GetHandle method will locate the component specified by the
component name given, load that component into memory and then invoke the
component's methods to create an instance of the component.

The core should return from this call within 20 msec.

Parameters:

[out] pHandle pointer to an OMX_HANDLETYPE pointer to be filled in by this
method.
[in] cComponentName pointer to a null terminated string with the component
name. The names of the components are strings less than 127 bytes in length
plus the trailing null for a maximum size of 128 bytes. An example of a valid
component name is "OMX.TI.AUDIO.DSP.MIXER\0". Names are assigned by
the vendor, but shall start with "OMX." and then have the Vendor designation
next.
[in] pAppData pointer to an application defined value that will be returned during
callbacks so that the application can identify the source of the callback.
[in] pCallBacks pointer to a OMX_CALLBACKTYPE structure that will be
passed to the component to initialize it with.

Returns:

OMX_ERRORTYPE If the command successfully executes, the return code will
be OMX_ErrorNone. Otherwise the appropriate OMX error will be returned.

 OMX_GetRolesOfComponent (compName, pNumRoles, roles)

[This API is not implemented in this release].

The OMX_GetRolesOfComponent method will return the number of roles supported
by the given component and (if the roles field is non-NULL) the names of those
roles. The call will fail if an insufficiently sized array of names is supplied. To ensure
the array is sufficiently sized the client should: first call this function with the roles
field NULL to determine the number of role names second call this function with the
roles field pointing to an array of names allocated according to the number returned
by the first call.

The core should return from this call within 5 msec.

Parameters:

[in] compName This is the name of the component being queried about.
[inout] pNumRoles This is used both as input and output.

If roles is NULL, the input is ignored and the output specifies how many roles the
component supports.

If compNames is not NULL, on input it bounds the size of the input structure and on
output, it specifies the number of roles string names listed within the roles
parameter.

Parameters:

[out] roles If NULL this field is ignored. If non-NULL this points to an array of
128-byte strings which accepts a list of the names of all standard components

 47

roles implemented on the specified component name. numComps indicates the
number of names.

 OMX_Init (void)

The OMX_Init method is used to initialize the OMX core. It shall be the first call
made into OMX and it should only be executed one time without an interviening
OMX_Deinit call.

The core should return from this call within 20 msec.

Returns:

OMX_ERRORTYPE If the command successfully executes, the return code will
be OMX_ErrorNone. Otherwise the appropriate OMX error will be returned.

 OMX_SetupTunnel (hOutput, nPortOutput, hInput, nPortInput)

The OMX_SetupTunnel method will handle the necessary calls to the components
to setup the specified tunnel the two components. NOTE: This is an actual method
(not a define macro). This method will make calls into the component
ComponentTunnelRequest method to do the actual tunnel connection.

The ComponentTunnelRequest method on both components will be called. This
method shall not be called unless the component is in the OMX_StateLoaded state
except when the ports used for the tunnel are disabled. In this case, the component
may be in the OMX_StateExecuting, OMX_StatePause, or OMX_StateIdle states.

The core should return from this call within 20 msec.

Parameters:

[in] hOutput Handle of the component to be accessed. Also this is the handle of
the component whose port, specified in the nPortOutput parameter will be used
the source for the tunnel. This is the component handle returned by the call to
the OMX_GetHandle function. There is a requirement that hOutput be the
source for the data when tunelling (i.e. nPortOutput is an output port). If 0x0,
the component specified in hInput will have it's port specified in nPortInput
setup for communication with the application / IL client.
[in] nPortOutput nPortOutput is used to select the source port on component to
be used in the tunnel.
[in] hInput This is the component to setup the tunnel with. This is the handle of
the component whose port, specified in the nPortInput parameter will be used
the destination for the tunnel. This is the component handle returned by the call
to the OMX_GetHandle function. There is a requirement that hInput be the
destination for the data when tunelling (i.e. nPortInut is an input port). If 0x0, the
component specified in hOutput will have it's port specified in nPortPOutput
setup for communication with the application / IL client.
[in] nPortInput nPortInput is used to select the destination port on component to
be used in the tunnel.

Returns:

OMX_ERRORTYPE If the command successfully executes, the return code will
be OMX_ErrorNone. Otherwise the appropriate OMX error will be returned.
When OMX_ErrorNotImplemented is returned, one or both components is a
non-interop component and does not support tunneling.

On failure, the ports of both components are setup for communication with
the application / IL Client.

 48

[This API is not implemented in this release, as Non tunneled mode does not
require this].

ComponentTunnelRequest(hComp, nPort, hTunneledComp, nTunneledPort, pTunnelSetup)

The ComponentTunnelRequest method will interact with another OMX component
to determine if tunneling is possible and to setup the tunneling. The return codes for
this method can be used to determine if tunneling is not possible, or if tunneling is
not supported.

Base profile components (i.e. non-interop) do not support this method and should
return OMX_ErrorNotImplemented

The interop profile component MUST support tunneling to another interop profile
component with a compatible port parameters. A component may also support
proprietary communication.

If proprietary communication is supported the negotiation of proprietary
communication is done outside of OMX in a vendor specific way. It is only required
that the proper result be returned and the details of how the setup is done is left to
the component implementation.

When this method is invoked when nPort in an output port, the component will: 1.
Populate the pTunnelSetup structure with the output port's requirements and
constraints for the tunnel.

When this method is invoked when nPort in an input port, the component will: 1.
Query the necessary parameters from the output port to determine if the ports are
compatible for tunneling 2. If the ports are compatible, the component should store
the tunnel step provided by the output port 3. Determine which port (either input or
output) is the buffer supplier, and call OMX_SetParameter on the output port to
indicate this selection.

The component will return from this call within 5 msec.

Parameters:

[in] hComp Handle of the component to be accessed. This is the component
handle returned by the call to the OMX_GetHandle method.
[in] nPort nPort is used to select the port on the component to be used for
tunneling.
[in] hTunneledComp Handle of the component to tunnel with. This is the
component handle returned by the call to the OMX_GetHandle method. When
this parameter is 0x0 the component should setup the port for communication
with the application / IL Client.
[in] nPortOutput nPortOutput is used indicate the port the component should
tunnel with.
[in] pTunnelSetup Pointer to the tunnel setup structure. When nPort is an output
port the component should populate the fields of this structure. When When
nPort is an input port the component should review the setup provided by the
component with the output port.

Returns:

OMX_ERRORTYPE If the command successfully executes, the return code will
be OMX_ErrorNone. Otherwise the appropriate OMX error will be returned.

[This API is not implemented in this release, as Non tunneled mode does not
require this].

 49

OpenMax Component and Core APIs

OMX_GetComponentVersion(hComponent, pComponentName, pComponentVersion,
pSpecVersion, pComponentUUID)

GetComponentVersion will return information about the component. This is a
blocking call. This macro will go directly from the application to the component (via
a core macro). The component will return from this call within 5 msec (timing not
verified in this version).

Parameters:

[in] hComponent handle of component to execute the command
[out] pComponentName pointer to an empty string of length 128 bytes. The
component will write its name into this string. The name will be terminated by a
single zero byte. The name of a component will be 127 bytes or less to leave
room for the trailing zero byte. An example of a valid component name is
"OMX.ABC.ChannelMixer\0".
[out] pComponentVersion pointer to an OMX Version structure that the
component will fill in. The component will fill in a value that indicates the
component version. NOTE: the component version is NOT the same as the
OMX Specification version (found in all structures). The component version is
defined by the vendor of the component and its value is entirely up to the
component vendor.
[out] pSpecVersion pointer to an OMX Version structure that the component will
fill in. The SpecVersion is the version of the specification that the component
was built against. Please note that this value may or may not match the
structure's version. For example, if the component was built against the 2.0
specification, but the application (which creates the structure is built against the
1.0 specification the versions would be different.
[out] pComponentUUID pointer to the UUID of the component which will be
filled in by the component. The UUID is a unique identifier that is set at RUN
time for the component and is unique to each instantion of the component.

Returns:

OMX_ERRORTYPE If the command successfully executes, the return code will
be OMX_ErrorNone. Otherwise the appropriate OMX error will be returned.

OMX_GetExtensionIndex(hComponent, cParameterName, pIndexType)

Not implemented in this release.

The OMX_GetExtensionIndex macro will invoke a component to translate a vendor
specific configuration or parameter string into an OMX structure index. There is no
requirement for the vendor to support this command for the indexes already found
in the OMX_INDEXTYPE enumeration (this is done to save space in small
components). The component shall support all vendor supplied extension indexes
not found in the master OMX_INDEXTYPE enumeration. This is a blocking call.

The component should return from this call within 5 msec.

Parameters:

[in] hComponent Handle of the component to be accessed. This is the
component handle returned by the call to the GetHandle function.

 50

[in] cParameterName OMX_STRING that shall be less than 128 characters long
including the trailing null byte. This is the string that will get translated by the
component into a configuration index.
[out] pIndexType a pointer to a OMX_INDEXTYPE to receive the index value.

Returns:

OMX_ERRORTYPE If the command successfully executes, the return code will
be OMX_ErrorNone. Otherwise the appropriate OMX error will be returned.

 OMX_GetParameter(hComponent, nParamIndex, pComponentParameterStructure)

The OMX_GetParameter macro will get one of the current parameter settings from
the component. This macro cannot only be invoked when the component is in the
OMX_StateInvalid state. The nParamIndex parameter is used to indicate which
structure is being requested from the component. The application shall allocate the
correct structure and shall fill in the structure size and version information before
invoking this macro. When the parameter applies to a port, the caller shall fill in the
appropriate nPortIndex value indicating the port on which the parameter applies. If
the component has not had any settings changed, then the component should
return a set of valid DEFAULT parameters for the component. This is a blocking
call.

The component should return from this call within 20 msec (timing not verified in
this version).

The parameters that have been implemented are listed later in this chapter in the
section ‘Parameters Implemented’. The parameters are divided into (i) common
parameters that have been implemented for all components and (ii) additional
parameters if any for each component are specified later against the name of the
component.

Parameters:

[in] hComponent Handle of the component to be accessed. This is the
component handle returned by the call to the OMX_GetHandle function.
[in] nParamIndex Index of the structure to be filled. This value is from the
OMX_INDEXTYPE enumeration.
[in,out] pComponentParameterStructure Pointer to application allocated
structure to be filled by the component.

Returns:

OMX_ERRORTYPE If the command successfully executes, the return code will
be OMX_ErrorNone. Otherwise the appropriate OMX error will be returned.

 OMX_GetState(hComponent, pState)

The OMX_GetState macro will invoke the component to get the current state of the
component and place the state value into the location pointed to by pState.

The component should return from this call within 5 msec (timing not verified in this
version).

The components provided in the current release must be transitioned from states
Loaded à Idle à Executing during the setup and from Executing à Idle à Loaded
during tear-down.

 51

This release only implements OMX_StateLoaded, OMX_StateIdle, and
OMX_StateExecuting. Other states are not implemented. In case of invalid/corrupt
parameters, or unavailable resources, the behavior of this release is not
guaranteed/ tested.

Parameters:

[in] hComponent Handle of the component to be accessed. This is the
component handle returned by the call to the OMX_GetHandle function.
[out] pState pointer to the location to receive the state. The value returned is
one of the OMX_STATETYPE members

Returns:

OMX_ERRORTYPE If the command successfully executes, the return code will
be OMX_ErrorNone. Otherwise the appropriate OMX error will be returned.

 OMX_SendCommand(hComponent, Cmd, nParam, pCmdData)

Send a command to the component. This call is a non-blocking call. The component
should check the parameters and then queue the command to the component
thread to be executed. The component thread shall send the EventHandler()
callback at the conclusion of the command. This macro will go directly from the
application to the component (via a core macro). The component will return from
this call within 5 msec (timing not verified in this version).

When the command is "OMX_CommandStateSet" the component will queue a state
transition to the new state idenfied in nParam.

When the command is "OMX_CommandFlush", to flush a port's buffer queues, the
command will force the component to return all buffers NOT CURRENTLY BEING
PROCESSED to the application, in the order in which the buffers were received.

When the command is "OMX_CommandPortDisable" or
"OMX_CommandPortEnable", the component's port (given by the value of nParam)
will be stopped or restarted.

When the command "OMX_CommandMarkBuffer" is used to mark a buffer, the
pCmdData will point to a OMX_MARKTYPE structure containing the component
handle of the component to examine the buffer chain for the mark. nParam1
contains the index of the port on which the buffer mark is applied. See Specification
text for more details. Implemented in this release except for
OMX_CommandMarkBuffer and OMX_CommandFlush.

Parameters:

[in] hComponent handle of component to execute the command
[in] Cmd Command for the component to execute
[in] nParam Parameter for the command to be executed. When Cmd has the
value OMX_CommandStateSet, value is a member of OMX_STATETYPE.
When Cmd has the value OMX_CommandFlush, value of nParam indicates
which port(s) to flush. -1 is used to flush all ports a single port index will only
flush that port. When Cmd has the value "OMX_CommandPortDisable" or
"OMX_CommandPortEnable", the component's port is given by the value of
nParam. When Cmd has the value "OMX_CommandMarkBuffer" the
components pot is given by the value of nParam.
[in] pCmdData Parameter pointing to the OMX_MARKTYPE structure when
Cmd has the value "OMX_CommandMarkBuffer".

 52

Returns:

OMX_ERRORTYPE If the command successfully executes, the return code will
be OMX_ErrorNone. Otherwise the appropriate OMX error will be returned.

OMX_SetConfig(hComponent, nConfigIndex, pComponentConfigStructure)

The OMX_SetConfig macro will send one of the configuration structures to a
component. Each structure shall be sent one at a time, each in a separate
invocation of the macro. This macro can be invoked anytime after the component
has been loaded. The application shall allocate the correct structure and shall fill in
the structure size and version information (as well as the actual data) before
invoking this macro. The application is free to dispose of this structure after the call
as the component is required to copy any data it shall retain. This is a blocking call.

The component should return from this call within 5 msec.

Parameters:

[in] hComponent Handle of the component to be accessed. This is the
component handle returned by the call to the OMX_GetHandle function.
[in] nConfigIndex Index of the structure to be sent. This value is from the
OMX_INDEXTYPE enumeration above.
[in] pComponentConfigStructure pointer to application allocated structure to be
used for initialization by the component.

Returns:

OMX_ERRORTYPE If the command successfully executes, the return code will
be OMX_ErrorNone. Otherwise the appropriate OMX error will be returned.

 OMX_SetParameter(hComponent, nParamIndex, pComponentParameterStructure)

The OMX_SetParameter macro will send an initialization parameter structure to a
component. Each structure shall be sent one at a time, in a separate invocation of
the macro. This macro can only be invoked when the component is in the
OMX_StateLoaded state, or the port is disabled (when the parameter applies to a
port). The nParamIndex parameter is used to indicate which structure is being
passed to the component. The application shall allocate the correct structure and
shall fill in the structure size and version information (as well as the actual data)
before invoking this macro. The application is free to dispose of this structure after
the call as the component is required to copy any data it shall retain. This is a
blocking call.

The component should return from this call within 20 msec (timing not verified in
this release).

The parameters that have been implemented are listed later in this chapter in the
section ‘Parameters Implemented’. The parameters are divided into (i) common
parameters that have been implemented for all components and (ii) additional
parameters if any for each component are specified later against the name of the
component.

Parameters:

[in] hComponent Handle of the component to be accessed. This is the
component handle returned by the call to the OMX_GetHandle function.

 53

[in] nIndex Index of the structure to be sent. This value is from the
OMX_INDEXTYPE enumeration.
[in] pComponentParameterStructure pointer to application allocated structure to
be used for initialization by the component.

Returns:

OMX_ERRORTYPE If the command successfully executes, the return code will
be OMX_ErrorNone. Otherwise the appropriate OMX error will be returned.

OMX_EmptyThisBuffer(hComponent, pBuffer)

The OMX_EmptyThisBuffer macro will send a buffer full of data to an input port of a
component. The buffer will be emptied by the component and returned to the
application via the EmptyBufferDone call back. This is a non-blocking call in that the
component will record the buffer and return immediately and then empty the buffer,
later, at the proper time. As expected, this macro may be invoked only while the
component is in the OMX_StateExecuting. If nPortIndex does not specify an input
port, the component shall return an error.

The component should return from this call within 5 msec.

Parameters:

[in] hComponent Handle of the component to be accessed. This is the
component handle returned by the call to the OMX_GetHandle function.
[in] pBuffer pointer to an OMX_BUFFERHEADERTYPE structure allocated with
UseBuffer or AllocateBuffer.

Returns:

OMX_ERRORTYPE If the command successfully executes, the return code will
be OMX_ErrorNone. Otherwise the appropriate OMX error will be returned.

OMX_FillThisBuffer(hComponent, pBuffer)

The OMX_FillThisBuffer macro will send an empty buffer to an output port of a
component. The buffer will be filled by the component and returned to the
application via the FillBufferDone call back. This is a non-blocking call in that the
component will record the buffer and return immediately and then fill the buffer,
later, at the proper time. As expected, this macro may be invoked only while the
component is in the OMX_ExecutingState. If nPortIndex does not specify an output
port, the component shall return an error.

The component should return from this call within 5 msec.

Parameters:

[in] hComponent Handle of the component to be accessed. This is the
component handle returned by the call to the OMX_GetHandle function.
[in] pBuffer pointer to an OMX_BUFFERHEADERTYPE structure allocated with
UseBuffer or AllocateBuffer.

Returns:

OMX_ERRORTYPE If the command successfully executes, the return code will
be OMX_ErrorNone. Otherwise the appropriate OMX error will be returned.

 54

OMX_FreeBuffer(hComponent, nPortIndex, pBuffer)

The OMX_FreeBuffer macro will release a buffer header from the component which
was allocated using either OMX_AllocateBuffer or OMX_UseBuffer. If the
component allocated the buffer (see the OMX_UseBuffer macro) then the
component shall free the buffer and buffer header. This is a blocking call.

The component should return from this call within 20 msec.

Parameters:

[in] hComponent Handle of the component to be accessed. This is the
component handle returned by the call to the OMX_GetHandle function.
[in] nPortIndex nPortIndex is used to select the port on the component the
buffer will be used with.
[in] pBuffer pointer to an OMX_BUFFERHEADERTYPE structure allocated with
UseBuffer or AllocateBuffer.

Returns:

OMX_ERRORTYPE If the command successfully executes, the return code will
be OMX_ErrorNone. Otherwise the appropriate OMX error will be returned.

OMX_UseBuffer(hComponent, ppBufferHdr, nPortIndex, pAppPrivate, nSizeBytes, pBuffer)

The OMX_UseBuffer macro will request that the component use a buffer (and
allocate its own buffer header) already allocated by another component, or by the IL
Client. This is a blocking call.

The component should return from this call within 20 msec (timing not verified in
this release).

Parameters:

[in] hComponent Handle of the component to be accessed. This is the
component handle returned by the call to the OMX_GetHandle function.
[out] ppBuffer pointer to an OMX_BUFFERHEADERTYPE structure used to
receive the pointer to the buffer header

Returns:

OMX_ERRORTYPE If the command successfully executes, the return code will
be OMX_ErrorNone. Otherwise the appropriate OMX error will be returned.

OMX_UseEGLImage(hComponent, ppBufferHdr, nPortIndex, pAppPrivate, eglImage)

Not implemented in this release

The OMX_UseEGLImage macro will request that the component use a EGLImage
provided by EGL (and allocate its own buffer header) This is a blocking call.

The component should return from this call within 20 msec.

Parameters:

 55

[in] hComponent Handle of the component to be accessed. This is the
component handle returned by the call to the OMX_GetHandle function.
[out] ppBuffer pointer to an OMX_BUFFERHEADERTYPE structure used to
receive the pointer to the buffer header. Note that the memory location used for
this buffer is NOT visible to the IL Client.
[in] nPortIndex nPortIndex is used to select the port on the component the
buffer will be used with. The port can be found by using the nPortIndex value as
an index into the Port Definition array of the component.
[in] pAppPrivate pAppPrivate is used to initialize the pAppPrivate member of the
buffer header structure.
[in] eglImage eglImage contains the handle of the EGLImage to use as a buffer
on the specified port. The component is expected to validate properties of the
EGLImage against the configuration of the port to ensure the component can
use the EGLImage as a buffer.

Returns:

OMX_ERRORTYPE If the command successfully executes, the return code will
be OMX_ErrorNone. Otherwise the appropriate OMX error will be returned.

Additional Implementation Notes

Additional implementation notes for this release:

• OMX_COMPONENTREGISTERTYPE [Sec 3.1.2.1]

In our implementation, we statically register components with the core.

• OMX_PRIORITYMGMTTYPE [Sec 3.1.2.5]

In this release, we do not have different priorities for different
components.

• OMX_RESOURCECONCEALMENTTYPE [Sec 3.1.2.6]

Not implemented in this release.

• OMX_CALLBACKTYPE [Sec 3.1.2.9]

In the current release, the three callback functions (EventHandler,
FillBufferDone and EmptyBufferDone) have been implemented in the IL
client.. For EventHandler, only OMX_EventCmdComplete and
OMX_EventError have been implemented and tested.

 56

CONFIG/SETPARMETER API Implementation

Common Get/Set Param/Config across all components

Parameters Description

OMX_IndexParamAudioInit
See Sec 8.3 of Specifications[2]

OMX_IndexParamImageInit
See Sec 8.3 of Specifications [2]

OMX_IndexParamVideoInit
See Sec 8.3 of Specifications [2].

OMX_IndexParamOtherInit
See Sec 8.3 of Specifications [2].

OMX_IndexParamPortDefinition
See Sec 8.3 of Specifications [2].

OMX_IndexParamCompBufferSupplier
See Sec 8.3 of Specifications [2].

OMX_IndexParamPriorityMgmt
See Sec 8.3 of Specifications [2].

Table 4-1: Common parameters implemented in GetParams for
all components (See Sec 8.1 of Specifications [2]. for
explanation)

Parameters Description

OMX_IndexParamPortDefinition
See Sec 8.3 of Specifications [2].

OMX_IndexParamCompBufferSupplier
See Sec 8.3 of Specifications [2].

OMX_IndexParamPriorityMgmt
See Sec 8.3 of Specifications [2].

Table 4-2: Common Parameters implemented in standard SetParams for all
components (See Sec 8.3 of Specifications [2]. for explanation)

 57

Parameters Description

OMX_CommandStateSet See Sec 3.1.1.1 of
Specifications [2].

OMX_CommandPortDisable
See Sec 3.1.1.1 of
Specifications [2].

OMX_CommandPortEnable
See Sec 3.1.1.1 of
Specifications [2].

OMX_CommandMarkBuffer
See Sec 3.1.1.1 of
Specifications [2].

OMX_CommandFlush
See Sec 3.1.1.1 of
Specifications [2].

Table 4-3: Common commands implemented in SendCommand for all
components (See Sec 8.3 of Specifications [2]. for explanation)

Common Parameters implemented in SetParams for all components (See Sec
8.3 of Specifications [2]. for explanation)

1. OMX_PARAM_COMPPORT_NOTIFYTYPE
OMX_TI_IndexParamCompPortNotifyType:

Description: The OMX component's ports could be configured with various
notification types. This will decide the component port latency, where the
data processing is based on DataNotify rather than the periodic task. This
will be per port configuration and the Default configuration is Notify Never.

OMX_NOTIFY_TYPE: Notification Type

typedef enum OMX_NOTIFY_TYPE {

OMX_NOTIFY_TYPE_NONE = 0x0,

/** Notify Never */

OMX_NOTIFY_TYPE_ALWAYS = 0x1,

/** Always Notify */

OMX_NOTIFY_TYPE_ONCE = 0x2,

/** Notify Once, Not supported and is for future use */

OMX_NOTIFY_TYPE_32_BIT = 0x10000

}OMX_NOTIFY_TYPE;

typedef struct OMX_PARAM_COMPPORT_NOTIFYTYPE {

 58

OMX_U32 nSize;

/**< Size of the structure in bytes */

OMX_VERSIONTYPE nVersion;

/**< OMX specification version information */

OMX_U32 nPortIndex;

/**< Index of the port */

OMX_NOTIFY_TYPE eNotifyType;

/**< Notification Type */
} OMX_PARAM_COMPPORT_NOTIFYTYPE;

2. OMX_PARAM_BUFFER_MEMORYTYPE
OMX_TI_IndexParamBuffMemType:

Description: Type of Memory from where the component buffers are
getting allocated. By default it will be normal non tiled memory [In this
release, only memory type OMX_BUFFER_MEMORY_DEFAULT is

supported]

OMX_BUFFER_MEMORY_TYPE: Buffer allocation type. New types has
been added required for tiled support

typedef enum OMX_BUFFER_MEMORY_TYPE {

OMX_BUFFER_MEMORY_DEFAULT = 0x1,

/** Default Normal(Non-tiled) 1D Memory */

OMX_BUFFER_MEMORY_TILED_8BIT = 0x2,

/** 8-bit Tiled memory */

OMX_BUFFER_MEMORY_TILED_16BIT = 0x3,

/** 16-bit Tiled memory */

OMX_BUFFER_MEMORY_TILED_32BIT = 0x4,

/** 32-bit Tiled memory */

OMX_BUFFER_MEMORY_TILED_PAGE = 0x5,

/** Page Tiled memory */

OMX_BUFFER_MEMORY_CUSTOM = 0xA,

/** Custom buffer allocation which will be specified by derived component,
not tested */

OMX_BUFFER_MEMORY_32_BIT = 0x10000

} OMX_BUFFER_MEMORY_TYPE;

 59

typedef struct OMX_PARAM_BUFFER_MEMORYTYPE {

OMX_U32 nSize;

/**< Size of the structure in bytes */

OMX_VERSIONTYPE nVersion;

/**< OMX specification version information */

OMX_U32 nPortIndex;

/**< Index of the port */

OMX_BUFFER_MEMORY_TYPE eBufMemoryType;

/**< Type of the Memory to be allocated */

} OMX_PARAM_BUFFER_MEMORYTYPE;

Common Parameters implemented in SetConfig for all components (See Sec
8.3 of Specifications [2]. for explanation)

1. OMX_CONFIG_DOMXPROXYCOMPINFO

Index : OMX_TI_IndexConfigGetDomxCompInfo

Description: To get the domx related component info such stub & skel
handles etc

typedef struct OMX_CONFIG_DOMXPROXYCOMPINFO
{

OMX_U32 nSize;

/**< Size of the structure in bytes */

OMX_VERSIONTYPE nVersion;

/**< OMX specification version information */

OMX_HANDLETYPE hCompRealHandle;

/**< Real Component handle - valid only on remote core */

OMX_PTR pRpcStubHandle;

/**< Rpc Stub Handle for the OmxProxy */

OMX_U32 nRpcSkelPtr;

/**< Rpc Skel Handle for the OmxProxy - Valid only on remote core */

OMX_S8 cComponentName[OMX_MAX_STRINGNAME_SIZE];

/**< Component name */

OMX_S8 cComponentRcmSvrName[OMX_MAX_STRINGNAME_SIZE];

 60

/**< Component rcmsvr name */
} OMX_CONFIG_DOMXPROXYCOMPINFO;

2. OMX_CONFIG_VIDCHANNEL_RESOLUTION
OMX_TI_IndexConfigVidChResolution

Description: API to Configure the resolution related parameters of a specific
channel (port).
Assumption - Any driver channel of VFPC module will have a max of two
input ports and a max of two output ports

typedef struct OMX_CONFIG_VIDCHANNEL_RESOLUTION {

OMX_U32 nSize;

/**< Size of the structure in bytes */

OMX_VERSIONTYPE nVersion;

/**< OMX specification version information */

OMX_U32 nPortIndex;

/**< Index of the port */

OMX_DIRTYPE eDir;

/**< OMX_DirInput - Input, OMX_DirOutput - Output */

OMX_U32 nChId;

/**< Channel ID */

OMX_U32 Frm0Width;

/**< Width of first Frame */

OMX_U32 Frm0Height;

/**< Height of first Frame */

OMX_U32 Frm0Pitch;

/**< Pitch of first Frame */

OMX_U32 Frm1Width;

/**< Width of Second Frame */

OMX_U32 Frm1Height;

/**< Height of Second Frame */

OMX_U32 Frm1Pitch;

/**< Pitch of Second Frame */

OMX_U32 FrmStartX;

/**< Horizontal start offset */

OMX_U32 FrmStartY;

 61

/**< Vertical start offset */

OMX_U32 FrmCropWidth;

/**< Crop Width */

OMX_U32 FrmCropHeight;

/**< Crop Height */

} OMX_CONFIG_VIDCHANNEL_RESOLUTION;

3. OMX_CONFIG_ALG_ENABLE OMX_TI_IndexConfigAlgEnable

Description: Flag to enable/disable the Algorithm/IP

typedef struct OMX_CONFIG_ALG_ENABLE {

OMX_U32 nSize;

/**< Size of the structure in bytes */

OMX_VERSIONTYPE nVersion;

/**< OMX specification version information */

OMX_U32 nPortIndex;

/**< Index of the port */

OMX_U32 nChId;

/**< Channel ID */

OMX_BOOL bAlgBypass;

/**< Algorithm/IP enable/disable flag */

} OMX_CONFIG_ALG_ENABLE;

4. OMX_CONFIG_SUBSAMPLING_FACTOR
OMX_TI_IndexConfigSubSamplingFactor

Description: To set the Sub sampling factor of a specific port. This is used
to drop the output frame rate of the component in the order of 1/2, 1/3, 1/4
etc. Please not that validated only for 1/2(reduce to half) configuration. The
sub sampling factor shall be an integer. For example: 1 – no drop, 2 –
alternative frame drops etc.

typedef struct OMX_CONFIG_SUBSAMPLING_FACTOR {

OMX_U32 nSize;

/**< Size of the structure in bytes */

OMX_VERSIONTYPE nVersion;

/**< OMX specification version information */

OMX_U32 nPortIndex;

 62

/**< Index of the port */

OMX_U32 nSubSamplingFactor;

/**< Video frame rate sub sampling factor */

} OMX_CONFIG_SUBSAMPLING_FACTOR;

 63

Chapter 4

Multimedia Sample Applications

This chapter explains OpenMax components sample applications available on the
DM816x OpenMax Multimedia Sub-system. It explains the sample API sequence and
component chaining.

4.1 Sample Demonstration Application

In this SDK package, a sample demonstration of multimedia application is provided, which
runs on EVM with EIO card attached to it. This is provided as an ICON on matrix launcher
of SDK, where user can click on multimedia demo to see the application running. This
Application is running on Host A8 processor as an OMTB script. OMTB (OpenMax Test
Bench), is a simple framework for creating and connecting OpenMax components. It
makes use of OMX components running on media controller.

Figure 1 Demonstration example component data flow

Figure 1 shows the OMX components use case being shown as multimedia example with
this SDK package. Each of the component shown is an OMX component. File read and
buffer management is being done on host processor with OMTB.

Capture DEI

Display
HDMI

SD Encode

(420 (422)

(420
)

Bitstream

DECODE Scalar
Display

HD-DAC

(420
)

Bitstream

(422(420

1080p6
0

(420)

 64

Sample 1080p stream is read from SD card and parsed by IL client. It gives the parsed
frame to Video decoder OMX component running on media controller HDVICP2. After
being decoded, frame is passed to OMX scalar component running on Media controller
HDVPSS , which extracts the data image from Video decoder buffer, scales it and does
420 to 422 chroma format conversion. This is given to OMX VFDC display component
which sends the the data to HD-DAC output. This HD-DAC data is fed back to component
capture on EVM. This is accomplished by an external cable loopback. Capture is
programmed to have 1080p60 capture in 420 format. It is consumed by DEI component,
which produces two outputs, one in 420 and other in 422 formats. 420 output is fed to
encoder, for 1080p60 encoding. And other 422 output is displayed on TV by on chip HDMI
interface.

If additional capture source with 1080p60 component output is available, loopback cable
can be removed and two displays TV can be connected.

4.2 Sample IL Clients / Applications for Development and OpenMax
usage flow

4.2.1 Decode example

In this OMX release, a sample IL client program is provided at omx\demo\decode folder.
This sample program shows the OpenMax APIs and its usage in context of Video decoder
component. This application is built for cortex A8 processor running Linux.

Sample IL client is intended for decoding of a H264 or MPEG2 elementary bit stream. This
example shows the flow of OpenMax APIs.

 Omx_init initializes the DOMX required by OMX apis to be executed on media controller.
This does the memory initialization. And setsup the shared regions as well. [Please note
by default media controller firmware would not be loaded by this app., So care must be
taken to load the firmware (with the utilities provided in SDK) before running the
application]

§ Component instantiation

After doing the OMX init, decode component is created by calling the

OMX_GetHandle (&pHandle, (OMX_STRING) "OMX.TI.DUCATI.VIDDEC",
pAppData, pAppData->pCb);

Component name is unique identifier for every component. In earlier section all
components names have been described. Component expects callback functions (to IL
client) to be provided during GetHandle call.

§ Parameter settings

After getting the handle component parameters are set by calling

OMX_SetParameter (pHandle, OMX_IndexParamPortDefinition,
&pInPortDef)

This Api can take different indexes, as provided in header files. In this example d decoder
width / height / framerate / buffer count etc is set by using OMX_IndexParamPortDefinition
index. This is OpenMax standard index, structure of this index is available in header files
provided in this SDK.

 65

§ OpenMax Port Enable

After setting the parameters, ports of components are enabled by

OMX_SendCommand (pAppData->pHandle, OMX_CommandPortEnable,
OMX_VIDDEC_INPUT_PORT, NULL);

 OMX_SendCommand (pAppData->pHandle, OMX_CommandPortEnable,
OMX_VIDDEC_OUTPUT_PORT, NULL);

[By default VDEC components ports are enabled, so it is optional that user enables the
ports by calling this API]After enabling the ports, component state is changed from
loaded (after GetHandle component is in loaded state) to IDLE state. This requires all
buffers to be allocated before component can be moved to IDLE state. This is
accomplished by OMX_AllocateBuffer.

§ OpenMax Buffer Allocation

API:

OMX_AllocateBuffer (pHandle, &pAppData->pInBuff[i] , pAppData-
>pInPortDef->nPortIndex, pAppData, pAppData->pInPor tDef-
>nBufferSize);

In this release, component on media controller allocates the buffers and provides the
buffer header to IL client. Buffer header contains information about buffer pointer and
associated data structure. [This release does not support buffer allocation done on IL
client and supplied to component]. Component allocated buffer can be used by other
component by using OMX_UseBuffer API.

§ Data processing

After buffers are allocated, component is moved to execute state, and component is
ready to process buffers. IL client provides the buffer by calling following APIs
EmptyThisBuffer(pHandle, pAppData->pInBuff[i]);

FillThisBuffer(pHandle,pAppData->pOutBuff[i]);

In this example a stream is read from file and parser provides the frames in each buffer.
Il client provides this stream data by using EmptyThisBuffer call. Output buffers to
components are provided by using FillThisBuffer APIs.

Component informs the IL Client by calling the callbacks provided during getHandle(),
namely FillBufferDone and EmptyBufferDone.

After processing few frames in this sample application, component is moved back to idle
and loaded state. Finally component handle is deleted by using OMX_FreeHandle() API.

• Building the Application

For Building the app, SDK needs to be installed on linux host machine. To build the
examples components must be pre-built. In the top level SDK folder, “make
components” would build the components required for examples. “make examples”
would create the decode app binary in folder component-
sources/omx_05_xx_yy_bb/rebuilt-binaries/decode folder.

• Running the application

 For running the application following steps are required (By default in the init scripts of
Linux in /etc/init/rc5.d folder, firmware and module will be getting loaded)

 66

• Run the application
./decode_a8host_debug.xv5T -i sample.264 -w 1920
-h 1080 -o sample.yuv -c h264

4.2.2 Encode example

In this OMX release, a sample IL client program is provided at omx\demo\encode folder.
This sample program shows the OpenMax APIs and its usage in context of Video decoder
component. This application is built for cortex A8 processor running Linux.

Sample IL client is intended for encode of a YUV 420 data into H264 or MPEG4 or H263
elementary bit stream. This example shows the flow of OpenMax APIs.

 Omx_init initializes the DOMX required by OMX apis to be executed on media controller.
This does the memory initialization. And setsup the shared regions as well. [Please note
by default media controller firmware would not be loaded by this app., So care must be
taken to load the firmware (with the utilities provided in SDK) before running the
application]

§ Component instantiation

After doing the OMX init, decode component is created by calling the

OMX_GetHandle (&pHandle, (OMX_STRING) "OMX.TI.DUCATI.VIDENC",
pAppData, pAppData->pCb);

Component name is unique identifier for every component. In earlier section all
components names have been described. Component expects callback functions (to IL
client) to be provided during GetHandle call.

§ Parameter settings

After getting the handle component parameters are set by calling

OMX_SetParameter (pHandle, OMX_IndexParamPortDefinition,
&pInPortDef)

This Api can take different indexes, as provided in header files. In this example d decoder
width / height / framerate / buffer count etc is set by using OMX_IndexParamPortDefinition
index. This is OpenMax standard index, structure of this index is available in header files
provided in this SDK.

§ OpenMax Port Enable

After setting the parameters, ports of components are enabled by

OMX_SendCommand (pAppData->pHandle, OMX_CommandPortEnable,
OMX_VIDENC_INPUT_PORT, NULL);

 OMX_SendCommand (pAppData->pHandle, OMX_CommandPortEnable,
OMX_VIDENC_OUTPUT_PORT, NULL);

[By default VENC components ports are enabled, so it is optional that user enables the
ports by calling this API]After enabling the ports, component state is changed from
loaded (after GetHandle component is in loaded state) to IDLE state. This requires all
buffers to be allocated before component can be moved to IDLE state. This is
accomplished by OMX_AllocateBuffer.

 67

§ OpenMax Buffer Allocation

API:

OMX_AllocateBuffer (pHandle, &pAppData->pInBuff[i] , pAppData-
>pInPortDef->nPortIndex, pAppData, pAppData->pInPor tDef-
>nBufferSize);

In this release, component on media controller allocates the buffers and provides the
buffer header to IL client. Buffer header contains information about buffer pointer and
associated data structure. [This release does not support buffer allocation done on IL
client and supplied to component]. Component allocated buffer can be used by other
component by using OMX_UseBuffer API.

§ Data processing

After buffers are allocated, component is moved to execute state, and component is
ready to process buffers. IL client provides the buffer by calling following APIs
EmptyThisBuffer(pHandle, pAppData->pInBuff[i]);

FillThisBuffer(pHandle,pAppData->pOutBuff[i]);

In this example a stream is read from file and parser provides the frames in each buffer.
Il client provides this stream data by using EmptyThisBuffer call. Output buffers to
components are provided by using FillThisBuffer APIs.

Component informs the IL Client by calling the callbacks provided during getHandle(),
namely FillBufferDone and EmptyBufferDone.

After processing few frames in this sample application, component is moved back to idle
and loaded state. Finally component handle is deleted by using OMX_FreeHandle() API.

• Building the Application

For Building the app, SDK needs to be installed on linux host machine. To build the
examples components must be pre-built. In the top level SDK folder, “make
components” would build the components required for examples. “make examples”
would create the decode app binary in folder component-
sources/omx_05_xx_yy_bb/rebuilt-binaries/decode folder.

• Running the application

 For running the application following steps are required (By default in the init scripts of
Linux in /etc/init/rc5.d folder, firmware and module will be getting loaded)

• Run the application
./encode_a8host_debug.xv5T -i sample.yuv -w 1920
-h 1080 –f 30 –b 1000000 -o sample.h264 -c h264

 68

4.2.3 Decode_display example

This example uses three OMX components VDEC, VFPC, VFDC for creating a simple
application, which can decode an H264 elementary stream and scale and display it.
This application is an IL Client running on A8 processor with Linux operating system.
Decoder component runs on media controller HDVICP2, while scalar and display
component runs on media controller HDVPSS part of DM8168. OpenMax VDEC
component takes a buffer, which contains single frame of H264 elementary stream, and
after decoding gives the buffer to A8. Elementary stream chunking logic is implemented
as H264 stream parser, running on A8.

Data flow is implemented in IL client as different threads, processing buffers from
neighboring component. For details please refer to section IL Client design.

By default display is configured in IL Client to display video on on-chip HDMI port. This
can be routed to HDDAC port by changing the display id in IL client.

This application takes width, height, frame rate and file name as input argument. Frame
rate control allows decoder to run at frame rate specified as argument. Display is
running at 60 frames / second, so max frame rate is 60 frames per second. In this
application scalar is doing just the chroma conversion for display and scaling is not
done. So the display is of decoded stream’s video frame size. Scalar parameters can be
adjusted for scaling the decoded stream. For details on parameters, please refer to
VFPC section in OMX components chapter.

Figure 2 depicts the data flow between A8, decode, scalar and display components.

Figure 2 decode and display components

Application

VPSS

EmptyBufferDo
ne

C674x

 DSP

H.264
Frame

Chunkin

HD/SD

HDMI

ALSA

Drvr

OMX
Aud
Dec

IIS

SPDIF

HDMI

McASP

McASP

AIC310
6

SD

Flash

SD

Driver

Fbdev
Drvr

OpenG
L

ES

SGX53
0

Drvr

SGX530

File

System

OMX
Aud
Enc

HDMI
DVO

DACs

 = Open Source - Community Supported

= TI Provided Components

= Hardware

VFDC = Video Frame Display
Component
VFCC = Video Frame Capture
Component
VFPC = Video Frame Processing

= Processor

Med
ia

Con
troll

er

Media Controller

Sysfs
Drvr

V4L2
Display

V4L2
Captur

OMX
VFPC

OMX
VFDC

OMX
VFCC

OMX
Vid
Enc

OMX
Vid
Dec

Display

Chroma
/Resize Decode

H.264 ES
File Read

 = Future Component

Control
Data

 69

• Building application
For Building the app, SDK needs to be installed on linux host machine. To build the
examples components must be pre-built. In the top level SDK folder, “make
components” would build the components required for examples. “make examples”
would create the decode app binary in folder component-
sources/omx_05_02_00_03/rebuilt-binaries/decode_display folder.

• Running the application
For running the application following steps are required (By default in the init scripts of

Linux in /etc/init/rc5.d folder, firmware and module will be getting loaded)

v Run the application

./decode_display_a8host_debug.xv5T -i sample.h264
-w 1920 -h 1080 -f 60 -g 0 –d 0 –c h264

For codec selection –c with options h264, mpeg2,
mjpeg etc can be used.

Note: For MJPEG parser is not available in the exam ple,
and It works by taking a single JPEG picture, and d isplays
it for 2 seconds, before closing the example. So fo r
running mjpeg decoder, only single JPEG frame shoul d be
given.
• Enabling Graphics

1. To use graphics on fbdev 0, the bootargs needs to provide the memory allocated for
the fbdev0. For example to have 16MB allocation for fbdev0, the boot args will be

setenv bootargs 'console=ttyO2,115200n8 root=/dev/n fs
nfsroot= /filesys, nolock rw mem=128M vram=16M
notifyk.vpssm3_sva=0xBF900000 ti816xfb.vram= 0:16M
earlyprintk ip=dhcp'

2. During insmod of vpss.ko, address of the graphics buffer (sbufaddr) needs to be
mentioned.

modprobe vpss mode=hdmi:1080p-60 sbufaddr=0xBFB00000
i2c_mode=1

3. To get the graphics plane over the fbdev0, the command to be used is as follows:

./decode_display_a8host_debug.xv5T -i ./sample.h264 -w
1920 -h 1080 -f 60 –d 0 -g 1

With option g=1, the demo displays a graphics plane using fbdev0. On g=1, the
application creates a task IL_ClientFbDevAppTask() (available in the
fb_blending.c file). In this task, variable screen info is updated for 1280x720,
ARGB888 data. A ARGB888 color bar of size 1280x720 is generated by using
fill_color_bar function (). For every 128 frames, the blend type is changed from
no-blend to pixel-blend. The blend factor used is 0x80 for all pixels.

4.2.4 Decode_mosaicdisplay example

Please refer following link for the details.

http://processors.wiki.ti.com/index.php/OMX_EZSDK_Examples#Decode_
MosaicDisplay

http://processors.wiki.ti.com/index.php/OMX_EZSDK_Examples#Decode_MosaicDisplay
http://processors.wiki.ti.com/index.php/OMX_EZSDK_Examples#Decode_MosaicDisplay

 70

4.2.5 Capture_encode example

This example uses four OMX components VENC, VFPC, VFDC, VFCC for creating a simple
application, which can capture and encode it to an H264 elementary stream and also display it.
In this application, capture component which is running on HDVPSS part of media controller
captures the 1080p60 input from TVP7002 decoder on Catalog EIO board. This data is fed to
DEI component, which produces two outputs. One output is given to display component while
other is fed to encoder component running on HDVICP2. Since capture is being done with 420
progressive formats, DEI algorithm is not turned ON. For interlace capture, DEI can be used for
de-interlacing. This application takes width, height, frame rate, bitrate and file name as input
argument. By default display is on on-chip HDMI port. Encoder bit rate can be varied through
arguments passed in the application. More parameters for encoding can be changed in IL client
though OMX APIs.

Figure 3 capture and encode/display components

• Buidling the Application
For Building the app, SDK needs to be installed on linux host machine. To build the
examples components must be pre-built. In the top level SDK folder, “make components”
would build the components required for examples. “make examples” would create the
app binary in folder component-sources/omx_05_02_00_03/rebuilt-
binaries/capture_encode folder

• Running the application

For running the application following steps are required (By default in the init scripts of
Linux in /etc/init/rc5.d folder, firmware and module will be getting loaded)

v Run the application

Application

VPSS

IVA-HD

Video Coprocessor

C674x

 DSP

HD/SD

HDMI

ALSA

Drvr

OMX
Aud
Dec

IIS

SPDIF

HDMI

McASP

McASP

AIC310
6

SD

Flash

SD

Driver

Fbdev
Drvr

OpenG
L

ES

SGX53
0

Drvr

SGX530

File

System

OMX
Aud
Enc

HDMI
DVO

DACs

 = Open Source - Community Supported

 = TI Provided Components

 = Hardware

VFDC = Video Frame Display
Component
VFCC = Video Frame Capture
Component
VFPC = Video Frame Processing

 = Processor

Med
ia

Con
troll

er

Media Controller

Sysfs
Drvr

V4L2
Display

V4L2
Captur

OMX
VFPC

OMX
VFDC

OMX
VFCC

OMX
Vid
Enc

OMX
Vid
Dec

Capture
Chroma
/Resize

 = Future Component

Contr
Dat

 71

./capture_encode_a8host_debug.xv5T -o sample.h264 - m
1080p -f 60 -b 1000000 -n 1000 –d 0

4.2.6 display example

This example demonstrates, how to use SD/HDMI/HDDAC display. This example
generates the color bar and provides that as input to display. User should see
color bar on display.

• Buidling the Application

For Building the app, SDK needs to be installed on linux host machine. To build the
examples components must be pre-built. In the top level SDK folder, “make components”
would build the components required for examples. “make examples” would create the
display app binary in folder component-sources/omx_05_02_00_xx/rebuilt-
binaries/display folder

• Running the application

For running the application following steps are required (By default in the init scripts of
Linux in /etc/init/rc5.d folder, firmware and module will be getting loaded)

./display_a8host_debug.xv5T -d 0/1/2

4.2.7 IL Client design details for decode_display and capture_encode examples

This section would describe in brief the APIs used in these examples. More Details of
component and parameters are descried in OMX USER guide present in SDK.

OpenMax components typically require following OMX API sequence –

1. Create a component

 OMX API : OMX_GetHandle()
This API is required to be called for each component. This API takes the component name as
parameters and creates a particular OMX component.

2. Set the parameters
 OMX API: OMX_SetParameter() / OMX_SetConfig()
 This API takes the specific component handle, an index and structure pointer corresponding
to parameters supported by the component. Index and corresponding structures are defined in
OMX interface header files.

3. Enable the ports
OMX API: OMX_SendCommand()

Before allocating the buffers, ports must be enabled for each component. In the release,
encoder/decoder ports are enabled by default so it is not mandatory for encoder/decoder. This
API would take parameter as port index and command index as OMX_CommandPortEnable.

4. Change State to IDLE

OMX API: OMX_SendCommand()
This API takes specific component handle, and specific state to be changed. As per OMX
standard buffers are allocated during loaded to idle state transition. In the SDK, conventionally
output port of a component provides the buffers for input port of connected component. So in
these examples buffers are allocated on output port, and same buffer is supplied to input port

 72

of other component. All data buffers in OMX is specified by standard OMX buffer header. Each
component allocated buffer header of each buffer, which is used in the component.

5. Allocate buffers / buffer headers

 OMX APIs: OMX_AllocateBuffer() / OMX_UseBuffer()
 After moving the component to idle state, buffers allocation APIs are invoked for
buffer allocation. In the SDK, all buffers are allocated by media comtroller in response to
OMX_AllocateBuffer API. As described above buffer are allocated on output port of a
component, and informed to connect component by means of OMX_UseBuffer() API. If a
component’s input port is not connected to any other component, OMX_AllocateBuffer() API is
called on input port as well. In the decode example, as the input port of decode is not
connected to any other component, OMX_AllocateBuffer() APIs is invoked on input port as
well. In response to AllocateBuffer / USeBuffer APIs component returns a buffer header
corresponding to that buffer. IL Client uses these buffer headers to keep track of buffers.

6. Change State to EXECUTE
 OMX API: OMX_SendCommand()

This API is same as changing state to idle. This would take parameter as state to be changed as
‘execute’. After transitioning to execute state component is ready to take the buffers from IL client.

 Following flow diagram in figure 4 depicts the OMX component creation and state changes.

 73

Figure 4 OpenMax component creating and state change flow

7. Start sending / receiving data to/from Components.

 74

Figure 5 Data flow in IL Client

 75

This is accomplished by following 4 OMX APIs.

i. OMX API : OMX_EmptyThisBuffer()
IL Client provides a filled data buffers (for e.g. bit-stream data) to the component by calling this API.
This API takes specific component handle and a buffer header to the component. This API is called at
the input port of a component.

ii. OMX API: OMX_FillThisBuffer()

IL Client provide the empty buffer at the output port of a component, by calling this API. This API also
takes specific component handle and buffer header for output port of that component.

iii. OMX_EmptyBufferDone : callback by component
This is callback function, which is invoked by the component. This is implemented as an event
handler function in IL Client and provided to component during GetHandle() API. Based on
notification from component, IL Client can take decision of refilling this component or providing to
other component.

iv. OMX_FillBufferDone: callback by component
 This is also callback function, implemented as event handler by IL Client. This is invoked
by component, whenever output data is ready to be sent out. This callback is same as
EmptyBufferDone callback, and component handle and application private pointer is supplied to
distinguish between different components.

In the examples, IL client creates a thread (IL_ClientConnInConnOutTask) for each component,
which can send/receive buffers from other component. As described above, this thread is responsible
for calling / acting on the above 4 APIs. This thread is designed to read a message from a pipe called
as ‘local pipe’ and based on message use one of the above mentioned 4 APIs. Local pipe of each
component is populated by two ways.

i. By component’s own callback functions
ii. By connected component callback function

 Since initially there will not be any messages in the ‘local pipe’, thread provides the initial buffers to
the component as one time initialization. As component processes the buffers, it starts writing into
local pipe by callback functions. When a callback (from component) is received as EmptyBufferDone,
a message as “EBD” is written into local pipe. Similarly when a callback (from component) is received
as FillBufferDone(), a message as “ FBD” is written into local pipe. The thread, which reads the local
pipe checks these messages, and takes appropriate action, based on the connection status of the
port on which it received these callbacks.

If the port is connected to another component, it takes following action

i. Message “EBD” – this message informs the thread that, a buffer has been consumed at the
input port a component, and it is ready to be recycled. IL Client checks the connection status of this
port (status maintained in IL Client data structure), and if it is connected to another component, it
informs other component that this buffer can be use at output port of the connected component. To
accomplish this, a message as FillThisBuffer() / FTB is written into connected component’s local pipe.
IL client maintains the local pipe of connected component as “remote pipe” variable in each
component.

ii.Message “FBD” – This message informs the thread that, a buffer has been produced

by the component and can be consumed by other component. If this component is
connected to other component, IL client writes a message as “ EmptyThisBuffer / ETB
into other component’s local pipe. (referred as remote pipe in the component, where
callback is received)

 76

Decoder
Display

ScalarDecoder

ip
B

u
fP

ip
e

lo
c
a
lP

ip
e

lo
c
a

lP
ip

e

lo
c

a
lP

ip
e

Callbacks

EmptyBufferDone / FillBufferDone

EmptyBufferDone

IL_ClientConnInConnOutTask

IL
_
C

li
e
n

tI
n

p
u

tB
it

S
tr

e
a
m

R
e

a
d

T
a
s
k

ETB
ETB

FTB
FTB

VDEC VFPC VFDC

OMX_ETB
OMX_FTB

OMX_FTBOMX_ETB
OMX_ETB

Decoder
Display

ScalarDecoder

ip
B

u
fP

ip
e

lo
c
a
lP

ip
e

lo
c
a

lP
ip

e

lo
c

a
lP

ip
e

Callbacks

EmptyBufferDone / FillBufferDone

EmptyBufferDone

IL_ClientConnInConnOutTask

IL
_
C

li
e
n

tI
n

p
u

tB
it

S
tr

e
a
m

R
e

a
d

T
a
s
k

ETB
ETB

FTB
FTB

VDEC VFPC VFDC

OMX_ETB
OMX_FTB

OMX_FTBOMX_ETB
OMX_ETB

So “local pipe” for each component, takes the message for ETB/FTB/EBD/FBD and acts on its
component by calling OMX APIs.

For terminal component ports such as Input port of decoder / output port of encoder, which is not
connected to any other component, but does file read /write, a separate thread is created,
which reads/writes into a file. These threads in IL Clients are referenced as
IL_ClientInputBitStreamReadTask() and IL_ClientOutputBitStreamWriteTask().

a. IL_ClientInputBitStreamReadTask() – This thread reads a H264 elementary stream
parses it , and provides a single frame of data in a buffers to the component. To keep track and
recycling of these buffers a pipe called ipBufPipe is used to hold the buffer headers. Callback
function “IL_ClientCbEmptyBufferDone” checks for port status, and if it is not connected it
writes the buffer header into ipBufPipe of the decoder component.

b. ClientOutputBitStreamWriteTask() . This thread takes the output buffers from encoder and
wite the bitstream in a file. IL_ClientCbFillBufferDone() callback, checks for the port connection
status and if it is not connected to any other component (as the case for encoder), it writes the
buffer headers into opBufPipe.

 In both the above cases, initial buffers are provided to component by above threads as one
time initialization process. Above described methodology for buffer communication is
summarized in Figure 6 for decode_display examples, and in Figure 7 for capture_encode
example.

Figure 6 Data Flow diagram for Decode – Display sample application

 77

Figure 7. Data Flow diagram for Capture – Encode sample application

EncoderDisplayDEI
Capture

lo
c

a
lP

ip
e

lo
c
a

lP
ip

e

lo
c

a
lP

ip
e

lo
c

a
lP

ip
e

Callbacks

EmptyBufferDone / FillBufferDone

IL_ClientConnInConnOutTask

ETB
ETB

FTB FTB

VFCC VFPC VFDC

OMX_FTB

OMX_FTBOMX_ETB
OMX_ETB

Encoder

VENC

o
p

B
u

fP
ip

e

OMX_ETB

OMX_FTB

IL
_
C

lie
n

tO
u

tp
u

tB
itS

tre
a

m
W

rite
T

a
s

k

EncoderDisplayDEI
Capture

lo
c

a
lP

ip
e

lo
c
a

lP
ip

e

lo
c

a
lP

ip
e

lo
c

a
lP

ip
e

Callbacks

EmptyBufferDone / FillBufferDone

IL_ClientConnInConnOutTask

ETB
ETB

FTB FTB

VFCC VFPC VFDC

OMX_FTB

OMX_FTBOMX_ETB
OMX_ETB

Encoder

VENC

o
p

B
u

fP
ip

e

OMX_ETB

OMX_FTB

IL
_
C

lie
n

tO
u

tp
u

tB
itS

tre
a

m
W

rite
T

a
s

k

 78

• Tear down sequence -

For terminating the application, OMX component state machines are changed to loaded state
before deleting the component, so that all buffers are freed up. Figure 8 depicts the tear-down
sequence.

Figure 8 Tear down sequence

 79

Chapter 5

DSP OpenMax example

5.1.1 MP3 Decoder Integration

Integration details for MP3 decoder are available on Wiki at
http://processors.wiki.ti.com/index.php/MP3_Decoder_Integration_in_EZSDK

5.1.2 Audio Decode example

In this OMX release, a sample IL client program is provided at omx\demos\adec_snt
folder. This sample program shows the OpenMax APIs and its usage in context of Audio
decoder component. This application is built for cortex A8 processor running Linux.

Sample IL client is intended for decoding of a MP3 or AAC elementary bit stream.
Currently the decoded output does not playout, instead decoded output is written
back to a file in 16bit linear format (Intel format). Playing out the PCM is scoped for
future EZSDK release.

 This example shows the flow of OpenMax APIs.

Omx_init initializes the DOMX required by OMX apis to be executed on media controller.
This does the memory initialization. And sets up the shared regions as well. [Please note
by default media controller firmware would not be loaded by this app., So care must be
taken to load the firmware (with the utilities provided in SDK) before running the
application]

§ Component instantiation

After doing the OMX init, decode component is created by calling the

OMX_GetHandle (&pHandle, (OMX_STRING) "OMX.TI.DSP.AUDDEC",
pAppData, pAppData->pCb);

Component name is unique identifier for every component. In earlier section all
components names have been described. Component expects callback functions (to IL
client) to be provided during GetHandle call.

§ Parameter settings

After getting the handle component parameters are set by calling

OMX_SetParameter (pHandle, OMX_IndexParamPortDefinition,
&pInPortDef)

This Api can take different indexes, as provided in header files. In this example decoder
audio format / buffer size etc is set by using OMX_IndexParamPortDefinition index. This

http://processors.wiki.ti.com/index.php/MP3_Decoder_Integration_in_EZSDK

 80

is OpenMax standard index, structure of this index is available in header files provided in
this SDK.

§ OpenMax Port Enable

After setting the parameters, ports of components are enabled by

OMX_SendCommand (pAppData->pHandle, OMX_CommandPortEnable,
OMX_AUDDEC_INPUT_PORT, NULL);

 OMX_SendCommand (pAppData->pHandle, OMX_CommandPortEnable,
OMX_AUDDEC_OUTPUT_PORT, NULL);

[By default ADEC components ports are enabled, so it is optional that user enables the
ports by calling this API]After enabling the ports, component state is changed from
loaded (after GetHandle component is in loaded state) to IDLE state. This requires all
buffers to be allocated before component can be moved to IDLE state. This is
accomplished by OMX_AllocateBuffer.

§ OpenMax Buffer Allocation

API:

OMX_AllocateBuffer (pHandle, &pAppData->pInBuff[i] , pAppData-
>pInPortDef->nPortIndex, pAppData, pAppData->pInPor tDef-
>nBufferSize);

In this release, component on media controller allocates the buffers and provides the
buffer header to IL client. Buffer header contains information about buffer pointer and
associated data structure. [This release does not support buffer allocation done on IL
client and supplied to component]. Component allocated buffer can be used by other
component by using OMX_UseBuffer API.

§ Data processing

After buffers are allocated, component is moved to execute state, and component is
ready to process buffers. IL client provides the buffer by calling following APIs
EmptyThisBuffer(pHandle, pAppData->pInBuff[i]);

FillThisBuffer(pHandle,pAppData->pOutBuff[i]);

In this example, bitstream data is read from file and data is copied into input buffer. IL
client provides this stream data by using EmptyThisBuffer call. Output buffers to
components are provided by using FillThisBuffer APIs.

 81

Component informs the IL Client by calling the callbacks provided during getHandle(),
namely FillBufferDone and EmptyBufferDone.

After processing all the frames in the input file, component is moved back to idle and
loaded state. Finally component handle is deleted by using OMX_FreeHandle() API.

Figure 4. Data Flow diagram for ADEC SNT Audio application

Callbacks
/

IL_ClientConnInConnOutTask

ADEC ADEC

Callbacks

FillBufferDone

EmptyBufferDone

ADEC

OMX_ETB

localPipe

localPipe
FillBufferDone

Application

C674x+

 DSP

 = Open Source - Community Supported

= TI Provided Components

 = Customer, 3rd Party Code, or Open Source = Hardware

ADEC = Audio Decode Component

= Processor

ADEC

 = Future Component

 82

• Building the Application

For Building the app, SDK needs to be installed on linux host machine. To build the
examples, components must be pre-built. In the top level SDK folder, “make omx” would
build the dsp executable and the IL Client.

• Running the application

 For running the application following steps are required (By default in the init scripts of
Linux in /etc/init/rc5.d folder, firmware and module will be getting loaded, so following is
required only if it is disabled in rc5.d scripts)
–

• Insert syslink
modprobe syslink

• Load the Firmware using firmware_loader utility provided in SDK.
(filesystem\user\bin)

i. firmware_loader 0 /usr/share/ti/ti-media-
controller-utils/dm816x_c6xdsp.xe674 start

ii. firmware_loader 1 /usr/share/ti/ti-media-

controller-utils/dm816x_hdvicp.xem3 start

iii. firmware_loader 2 /usr/share/ti/ti-media-
controller-utils/dm816x_hdvpss.xem3 start

• Run the application: The first argument is the input file name to

be decoded; the second argument is the decoded output file
name. The third argument defines the codec type [mp3, aaclc].
Fourth says format (check help of example), and 5

th
 defines

sampling rate.

./adec_snt_a8host_debug.xv5T –i sample.aac –o outpu t.pcm –c aaclc -r 1 -s
48000

5.1.3 Audio Encode example

In this OMX release, a sample IL client program is provided at omx\demos\audio_encode
folder. This sample program shows the OpenMax APIs and its usage in context of Audio
encoder component. This application is built for cortex A8 processor running Linux.

Sample IL client is intended for encoding of a PCM elementary bit stream into aaclc
encode. [Please note by default AACLC encode is not present in dsp binary, it needs
to be integrated as described in next section, before testing the IL Client.]

 This example shows the flow of OpenMax APIs.

Omx_init initializes the DOMX required by OMX apis to be executed on media controller.
This does the memory initialization. And sets up the shared regions as well. [Please note
by default media controller firmware would not be loaded by this app., So care must be
taken to load the firmware (with the utilities provided in SDK) before running the
application]

§ Component instantiation

After doing the OMX init, decode component is created by calling the

OMX_GetHandle (&pHandle, (OMX_STRING) "OMX.TI.DSP.AUDENC",
pAppData, pAppData->pCb);

 83

Component name is unique identifier for every component. In earlier section all
components names have been described. Component expects callback functions (to IL
client) to be provided during GetHandle call.

§ Parameter settings

After getting the handle component parameters are set by calling

OMX_SetParameter (pHandle, OMX_IndexParamPortDefinition,
&pInPortDef)

This Api can take different indexes, as provided in header files. In this example decoder
audio format / buffer size etc is set by using OMX_IndexParamPortDefinition index. This
is OpenMax standard index, structure of this index is available in header files provided in
this SDK.

§ OpenMax Port Enable

After setting the parameters, ports of components are enabled by

OMX_SendCommand (pAppData->pHandle, OMX_CommandPortEnable,
OMX_AUDENC_INPUT_PORT, NULL);

 OMX_SendCommand (pAppData->pHandle, OMX_CommandPortEnable,
OMX_AUDENC_OUTPUT_PORT, NULL);

[By default AENC components ports are enabled, so it is optional that user enables the
ports by calling this API]After enabling the ports, component state is changed from
loaded (after GetHandle component is in loaded state) to IDLE state. This requires all
buffers to be allocated before component can be moved to IDLE state. This is
accomplished by OMX_AllocateBuffer.

§ OpenMax Buffer Allocation

API:

OMX_AllocateBuffer (pHandle, &pAppData->pInBuff[i] , pAppData-
>pInPortDef->nPortIndex, pAppData, pAppData->pInPor tDef-
>nBufferSize);

In this release, component on media controller allocates the buffers and provides the
buffer header to IL client. Buffer header contains information about buffer pointer and
associated data structure. [This release does not support buffer allocation done on IL
client and supplied to component]. Component allocated buffer can be used by other
component by using OMX_UseBuffer API.

§ Data processing

After buffers are allocated, component is moved to execute state, and component is
ready to process buffers. IL client provides the buffer by calling following APIs
EmptyThisBuffer(pHandle, pAppData->pInBuff[i]);

FillThisBuffer(pHandle,pAppData->pOutBuff[i]);

In this example, bitstream data is read from file and data is copied into input buffer. IL
client provides this stream data by using EmptyThisBuffer call. Output buffers to
components are provided by using FillThisBuffer APIs.

 84

Component informs the IL Client by calling the callbacks provided during getHandle(),
namely FillBufferDone and EmptyBufferDone.

After processing all the frames in the input file, component is moved back to idle and
loaded state. Finally component handle is deleted by using OMX_FreeHandle() API.

Figure 4. Data Flow diagram for Audio_Encode Audio application

Callbacks
/

IL_ClientConnInConnOutTask

AENC AENC

Callbacks

FillBufferDone

EmptyBufferDone

AENC

OMX_ETB

localPipe

localPipe
FillBufferDone

Application

C674x+

 DSP

 = Open Source - Community Supported

= TI Provided Components

 = Customer, 3rd Party Code, or Open Source = Hardware

AENC = Audio Encode Component

= Processor

AENC

 = Future Component

 85

• Building the Application

For Building the app, SDK needs to be installed on linux host machine. To build the
examples, components must be pre-built. In the top level SDK folder, “make omx” would
build the dsp executable and the IL Client.

• Running the application

 For running the application following steps are required (By default in the init scripts of
Linux in /etc/init/rc5.d folder, firmware and module will be getting loaded, so following is
required only if it is disabled in rc5.d scripts)
–

• Insert syslink
modprobe syslink

• Load the Firmware using firmware_loader utility provided in SDK.
(filesystem\user\bin)

i. firmware_loader 0 /usr/share/ti/ti-media-
controller-utils/dm816x_c6xdsp.xe674 start

ii. firmware_loader 1 /usr/share/ti/ti-media-

controller-utils/dm816x_hdvicp.xem3 start

iii. firmware_loader 2 /usr/share/ti/ti-media-
controller-utils/dm816x_hdvpss.xem3 start

• Run the application: The first argument is the input file name to

be decoded; the second argument is the decoded output file
name. The third argument defines the codec type [aaclc],
fourth is number of channels, fifth is bit rate, sixth is sampling
rate and last is algorithm, as in following.

./audio_encode_a8host_debug.xv5T -i input.pcm -o output.aac -c aaclc -n 2
-b 192000 -s 44100 -f ADTS

5.1.4 Integrating AACLC encode

Integration details for AACLC encoder are available on Wiki at

http://processors.wiki.ti.com/index.php/OMX_AAC_LC_Encoder_Integration_in_EZSDK

5.1.5 VLPB example

This section describes an example OpenMax component on DSP. It also briefly
explains the sample API sequence.

About OpenMax Video LooPBack Component (VLPB):

VLPB stands for Video Loop Back Component. The component name is
"OMX.TI.C67X.VLPB". As is clear from the name, the component runs on the DSP
(C67x). This component has 16 input ports and 16 output ports. It copies a buffer on
its input port to a buffer on the output port. There is a one to one correspondence
between the input and output ports. Therefore, essentially this a copy component
running on the DSP

About the OpenMax IL-Client (c6xtest):

http://processors.wiki.ti.com/index.php/OMX_AAC_LC_Encoder_Integration_in_EZSDK

 86

In this SDK, a sample application ‘C’ program is provided at omx\demos\c6xtest
folder. This sample program shows the OpenMax APIs and its usage. This
application is built for cortex A8 processor running Linux.

This example uses the OpenMax component VLPB for creating a simple
application, which can copy a buffer from one memory location to another. This
application does not take any additional parameters as input argument. In this
example, only one input and one output port of the VLPB component is used.

This examples initially does the platform_init. This does the memory initialization.
And sets up the shared regions. Omx_init loads the dsp firmware (if enabled), and
initializes the DOMX required by OMX apis to be executed on dsp. [Please note by
default dsp firmware would not be loaded by this app., So care must be taken to
load the firmware (with the utilities provided in SDK) before running the application]

In case user is interested in loading the binaries by this application itself, c6xtest
application must be rebuilt by changing the setting the following variable to ‘1’ in
app_cfg.h file (in same folder as c6xtest source files)

#define DOMX_CORE_DOPROCINIT (1)

After doing the OMX init, vlpb component is created by calling the

OMX_GetHandle (&pAppData->pVlpbHandle, (OMX_STRING)
"OMX.TI.C67X.VLPB", pAppData->vlpbILComp, &pAppData->pCb);;

Component name is a unique identifier for every component. Component expects
callback functions (to IL client) to be provided during GetHandle call. Asfter
GetHandle call, the component is in LOADED state.

After getting the handle component parameters are set by calling

OMX_SetParameter (pHandle, OMX_IndexParamPortDefinition, &pInPortDef)

This Api can take different indexes, as provided in header files. In this example
width / height / buffer count etc is set by using OMX_IndexParamPortDefinition
index. This is OpenMax standard index, structure of this index is available in
header files provided in this SDK.

After setting the parameters, ports of components are enabled by

OMX_SendCommand (pHandle, OMX_CommandPortEnable,
OMX_VLPB_INPUT_PORT_START_INDEX, NULL);

OMX_SendCommand (pHandle, OMX_CommandPortEnable,
OMX_VLPB_OUTPUT_PORT_START_INDEX, NULL);

[By default components ports are disabled, so it is required that user enables the
ports by calling this API]

After enabling the ports, component state is changed from LOADED to IDLE state.
This requires all buffers to be allocated before component can be moved to IDLE
state. This is accomplished by

OMX_AllocateBuffer (pHandle, &pAppData->pInBuff[i], pAppData->pInPortDef-
>nPortIndex, pAppData, pAppData->pInPortDef->nBufferSize);

In this release, component on dsp allocates the buffers for its output port and
provides the buffer header to IL client. Buffer header contains information about
buffer pointer and associated data structure. Component allocated buffer can be

 87

used by next component in the chain by using OMX_UseBuffer API. For the input
port the buffers can be allocated by the component using OMX_AllocateBuffer API
However, if another component’s output port has been connected to the VLPB
component’s input port, then the buffer for the input port of the VLPB component
should be allocated using the OMX_UseBuffer API. [This release does not support
buffer allocation done on IL client and supplied to component].

After buffers are allocated, component is moved to execute state, and component is
ready to process buffers. IL client provides the buffer by calling following APIs

OMX_EmptyThisBuffer(pHandle, pAppData->pInBuff[i]);

OMX_FillThisBuffer(pHandle,pAppData->pOutBuff[i]);

In this example a buffer of size IL_CLIENT_VLPB_BUFFER_SIZE is filled with
IL_CLIENT_VLPB_PATTERN and is passed as the input buffer. IL client provides
this buffer by using OMX_EmptyThisBuffer call. Output buffers to components are
provided by using OMX_FillThisBuffer APIs. Component informs the IL Client by
calling the callbacks provided during GetHandle(), namely FillBufferDone and
EmptyBufferDone. After processing IL_CLIENT_VLPB_MAX_FRAMES frames in
this sample application, component is moved back to idle and loaded state. Finally
component handle is deleted by using OMX_FreeHandle() API. The constants
IL_CLIENT_VLPB_xxx are defined in ilclient_utils.h

Application

C674x+

 DSP

 = Open Source - Community Supported

= TI Provided Components

 = Customer, 3rd Party Code, or Open Source = Hardware

VLPB = Video Loopback Component
Aud = Audio Component

= Processor

VLPB

 = Future Component

Dat

OMX
Aud

 88

IL Client Design:

The IL Client design is similar to those documented in Chapter 4. The flow diagram is given
below

Figure 3. Data Flow diagram for c6xtest – DSP sample application

• Building the Application

For Building the app, SDK needs to be installed on Linux host machine. To build the
examples, components must be pre-built. In the top level SDK folder, “make
components” would build the components required for examples. “make omx” would
create the c6xtest app (Linux A8) binary in component-
sources/omx_05_02_00_0x/bin/c6xtest/bin/ti816x-evm/c6xtest folder. It will also rebuild
the dsp firmware in component-sources/omx_05_02_00_0x/bin/dm81xx/bin/ti816x-evm
folder.

• Running the application

For running the application following steps are required.

• Insert syslink
modprobe syslink

Callbacks
/

IL_ClientConnInConnOutTask

VLPB VLPB

Callbacks

FillBufferDone

EmptyBufferDone

VLPB

OMX_ETB

OMX_FTB

localPipe

FillBufferDone

localPipe

EmptyBufferDone

 89

Above step would be done by default in init scripts of SDK, so they will not
be required if no change is done in init scripts.

• Load the Firmware using firmware_loader utility provided in SDK.

(filesystem\user\bin)
i. firmware_loader 0 /usr/share/ti/ti-media-

controller-utils/dm816x_c6xdsp.xe674 start

v Run the application

./c6xtest_a8host_debug.xv5T

 90

Chapter 6

References

[1] Khronos OpenMax Overview http://www.khronos.org/openmax/

[2] OpenMax IL v1.1.2 specifications,
http://www.khronos.org/files/openmax_il_spec_1_1_2.pdf

http://www.khronos.org/openmax/
http://www.khronos.org/files/openmax_il_spec_1_1_2.pdf

	IMPORTANT NOTICE
	DM816x
	OpenMax Overview
	OpenMax Integration Layer (IL)
	OpenMax Component State Machine
	OpenMax Component Architecture
	OpenMax component classes
	General Information about OMX components
	General Information about OMX components
	General Information
	Enumerations
	The following is the list of OpenMax IL APIs and some notes on their implementation status where appropriate.
	Parameters:
	Returns:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Parameters:
	Parameters:
	Returns:
	Parameters:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	OpenMax Component and Core APIs
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:
	Parameters:
	Returns:

