
DM814x C6A814x AM387x EZ Software Developers
Guide
Translate this page to Translate Show original

Contents

1 Welcome to the DM814x/C6A814x/AM387x EZ Software Developer's
Guide

•

2 Starting your software development
2.1 Setting up the EZ SDK♦
2.2 Writing your own "Hello World!" application and executing
it on the target

♦

•

3 Running the pre-installed applications on the target file system
3.1 Running the DaVinci and Integra demo examples

3.1.1 Running OMTB◊
3.1.2 Running the Signal Analyzer Demo◊

♦

3.2 Running the SysLink examples♦
3.3 Running the Codec Engine examples♦
3.4 Running the C6Run examples♦
3.5 Running the C6Accel apps♦
3.6 Running the Qt/Embedded examples♦
3.7 Running the Graphics SDK examples♦

•

4 Using the devkits
4.1 Regenerating the devkits♦
4.2 Verifying the devkit integrity♦
4.3 Moving the devkits♦

•

5 EZSDK software overview
5.1 Creating a Linux application♦
5.2 Creating a SYS/Link application♦
5.3 Creating a C6Accel application♦
5.4 Creating a C6Run application♦
5.5 Creating an OpenMax IL application♦
5.6 Creating a Qt/Embedded application♦
5.7 Matrix User's Guide♦

•

6 Additional Procedures
6.1 Setting up cross compilation environment♦
6.2 Rebuilding the EZ SDK components♦
6.3 Creating your own Linux kernel image♦
6.4 Setting up Tera Term♦
6.5 How to create an SD card♦
6.6 How to copy boot loaders to NAND flash♦
6.7 How to change the display resolution♦
6.8 How to change the display from LCD to HDMI♦
6.9 FAQ♦

•

DM814x C6A814x AM387x EZ Software Developers Guide

DM814x C6A814x AM387x EZ Software Developers Guide 1

Welcome to the DM814x/C6A814x/AM387x EZ
Software Developer's Guide
Thanks you for choosing the DM814x/C6A814x/AM387x Evaluation Module (EVM) for your application.
The purpose of this guide is to get you going with developing software for the DM814x/C6A814x/AM387x
on a Linux development host only.

Note! This Software Developer's Guide (SDG) supports version 5.02 of the DM814x/C6A814x/AM387x
EZSDK which is only for Linux host development.

Note! This guide assumes you have already followed the Quick Start Guide (QSG) for setting up your EVM
and installing the Easy Software Development Kit (EZ SDK). If you have not done this yet, please do so now
before continuing. You can find a hard copy contained with your EVM. Alternatively you can find the QSG
PDF and various other documentation in the 'docs' directory of the EZSDK installation directory.

Note! All instructions in this guide are for Ubuntu 10.04 LTS. At this time, it is the only supported Linux host
distribution for development.

Note! In previous DVSDK releases there has been a Getting Started Guide explaining how to set up the
DVSDK. This document replaces and extends the Getting Started Guide for DVSDK 3.xx and is a new
document in the EZSDK superseding the Getting Started Guide.

Throughout this document there will be commands spelled out to execute. Some are to be executed on the
Linux development host, some on the Linux target and some on the u-boot (bootloader) prompt. They are
distinguished by different command prompts as follows:

host $ <this command is to be executed on the host>
target # <this command is to be executed on the target>
u-boot :> <this command is to be executed on the u-boot prompt>

Starting your software development
Your EZ SDK should be installed before you continue. Throughout this document it will be assumed you
have an environment variable EZSDK which points to where your EZ SDK is installed. You can set it as
follows (the following assumes that EZ SDK was installed at default location):

host $ export EZSDK="${HOME}/ti-ezsdk_dm814x-evm_xx_xx_xx_xx"

Setting up the EZ SDK

You will need an ARM Linux development environment, in case you do not have one please refer to this link
to see how to set one up.

Configuration of ARM Linux development Environment

Please get the Code Sourcery tools that will be the compiler for the ARM Linux applications.

Code Sourcery Tools Download

DM814x C6A814x AM387x EZ Software Developers Guide

 Starting your software development 2

http://releases.ubuntu.com/10.04
http://processors.wiki.ti.com/index.php/How_to_Build_a_Ubuntu_Linux_host_under_VirtualBox
http://processors.wiki.ti.com/index.php/Installing_CodeSourcery_Lite

The EZ SDK comes with a script for setting up your Ubuntu 10.04 LTS development host as well as your
target boot environment. It is an interactive script, but if you accept the defaults by pressing return you will
use the recommended settings. This is recommended for first time users. Note that this script requires ethernet
access as it will update your Ubuntu Linux development host with the packages required to develop using the
EZ SDK. Execute the script using:

host $ ${EZSDK}/setup.sh

If you accepted the defaults during the setup process, you will now have set up your development host and
target to:

Boot the Linux kernel from your development host using TFTP. On your development host the Linux
kernel is fetched from /tftpboot by default.

1.

Boot the Linux file system from your development host using NFS. On your development host the
Linux target file system is located at ${HOME}/targetfs

2.

Minicom is set up to communicate with the target over RS-232. If you want to use a windows host for
connecting to the target instead, see the #Setting_up_Tera_Term section.

3.

Note! To boot the board from NFS, you may need to change the boot switch settings on your EVM. Please
refer the UBoot user guide in the board-support/docs folder for more information on the switch settings.

If you start minicom on your Linux development host using minicom -w (or Tera Term on Windows) and
power cycle the EVM, Linux will boot.

After Linux boots up, login into the target using root as the login name.

Note! The Matrix application launcher is launched automatically. If you exit from Matrix and if you would
like to start it again, execute the following command on the target board:

target # /etc/init.d/matrix-gui-e start

If your kit includes an LCD display, the first time the Matrix GUI is executed, you'll go through a LCD
touchscreen calibration process. The calibration process is important as other application in additional to the
Matrix GUI require calibration to run successfully. You can also run the calibration manually without starting
the Matrix GUI by executing the following command on the target board:

target # ln -s /dev/input/event0 /dev/input/touchscreen0
target # ts_calibrate

Make sure you have terminated the Matrix before running any other applications from the command line:

target # /etc/init.d/matrix-gui-e stop

Writing your own "Hello World!" application and executing
it on the target

This section shows how to create/build an application on your host development PC and execute a basic Linux
application on your booted target filesystem.

1. Create your own work directory on the host PC and enter it:

DM814x C6A814x AM387x EZ Software Developers Guide

Setting up the EZ SDK 3

host $ mkdir ${HOME}/workdir
host $ cd ${HOME}/workdir

2. Create a new C source file:

host $ gedit helloworld.c

Enter the following source code:

#include <stdio.h>

int main()
{
 printf("Hello World!\n");
}

Save the file and exit.

3. Create a basic makefile:

host $ gedit Makefile

Enter the following:

Import the variables from the EZSDK so that you can find the EZSDK components
include ${EZSDK}/Rules.make

helloworld:
Make sure that you use a tab below
 $(CSTOOL_PREFIX)gcc -o helloworld helloworld.c

Save the file and exit. Note that the gap before $(CSTOOL_PREFIX)gcc corresponds to a tab. If it is filled
with spaces instead you will get build errors.

4. Make sure the $EZSDK variable is still set using:

host $ echo $EZSDK

This command should print your EZSDK installation directory. If it doesn't, you will have to set it again as
described in the beginning of this document. Compile the application:

host $ make helloworld

As a result, an executable called helloworld is generated in ${HOME}/workdir

5. You now have your own application, but you need to create a directory and copy it to your NFS exported
filesystem to make it visible by the target:

host $ mkdir ${HOME}/targetfs/home/root/dm814x
host $ cp helloworld ${HOME}/targetfs/home/root/dm814x

6. On your target this application will be accessible from /home/root/dm814x/helloworld. Execute
it on your target:

target # /home/root/dm814x/helloworld

DM814x C6A814x AM387x EZ Software Developers Guide

Writing your own "Hello World!" application and executingit on the target 4

You should now see the following output:

Hello World!

Congratulations! You now have your own basic application running on the target.

Running the pre-installed applications on the
target file system
The filesystem comes with a number of prebuilt applications (which can be rebuilt inside the EZSDK). This
section shows how to execute those applications in the provided filesystem.

Before running these ensure that Matrix application is not running. This can be done by executing the
following command in the serial terminal.

target # /etc/init.d/matrix-gui-e stop

If you wish to restart the Matrix application at a later time, you can execute the following command.

target # /etc/init.d/matrix-gui-e start

Running the DaVinci and Integra demo examples

The EZSDK comes with example applications.

For DaVinci multimedia, you can use OMTB to run different OpenMAX IL chains. OMTB is the OpenMax
Test Bench which is a command-line utility used for validating OpenMax.

To see the Integra device examples that are available, check out this directory on the target:

target # cd /usr/share/ti/ti-integra-demos
target # ls

Running OMTB

Note: In order to see the video output, the graphics planes need to be turned off. By default, graphics plane 0
is tied to HDMI, graphics plane 1 is tied to HD DAC and graphics plane 2 is tied to SD. For more information
on the graphics planes and their sysfs entries, please read the VPSS guide in PSP documentation.

Turn off the Graphics Plane 0 by running the following command.

target # echo 0 > /sys/devices/platform/vpss/graphics0/enabled

In case Graphics Planes 1 and 2 are currently open, then they need to be disabled as well. This is only required
if the video output needs to be directed to the HD-DAC or SD displays.

target # echo 0 > /sys/devices/platform/vpss/graphics1/enabled
target # echo 0 > /sys/devices/platform/vpss/graphics2/enabled

Execute the following commands to run OMTB.

DM814x C6A814x AM387x EZ Software Developers Guide

 Running the pre-installed applications on the target file system 5

target # cd /usr/share/ti/ti-omtb
target # ./omtb_<platform>_a8host.xv5T <script-name>.oms

For more information on OMTB and how to construct OpenMAX IL chains please refer the OMX and OMTB
documentation.

Note: OMTB will require a script to run and should not be called without a valid script as an argument.

Note: You will need to turn the graphics planes back on if you wish to run any Graphics applications. You
will also need to revert the change to /etc/init.d/load-hdvpss-firmware.sh in case you wish to see the video
demo from the Matrix Application Launcher.

Note: The dual_display_encode_decode.oms script will pause within a couple of seconds. This script is
designed to work from matrix and hence has this pause functionality built in. A script which does not pause is
also present and can be used instead.

Running the Signal Analyzer Demo

Execute the following command to run the Signal Analyzer Demo application.

Note! - You should quit Matrix GUI before running the Signal Analyzer Demo manually from the command
prompt.

target # cd /usr/share/ti/ti-integra-demos
target # ./runSADemo -qws

You can view information on options/features available to the demos at How to Run Signal Analyzer Demo.
This information is also located in the docs/ folder along with other documents.

Running the SysLink examples

The SysLink comes with a few sample applications. To run one of the sample application such as "MessageQ"
use the below set of commands.

Note! The syslink samples should not be run out with graphics. Please execute the following steps to
teardown the graphics plane and ensure that no firmware is running.

target # /etc/init.d/pvr-init stop
target # /etc/init.d/matrix-gui-e stop
target # /etc/init.d/load-hdvicp2-firmware.sh stop
target # /etc/init.d/load-hdvpss-firmware.sh stop

Now the system is ready to run all syslink samples.

target # modprobe syslink
target # cd /usr/share/ti/ti-syslink-examples

Execute the following script to run the example application

target # ./messageqapp_debug 1 DSP dsp/messageq_ti81xx_dsp.xe674

The target terminal window will output the results of the examples executed.

DM814x C6A814x AM387x EZ Software Developers Guide

Running OMTB 6

http://processors.wiki.ti.com/index.php/C6A816x_Running_Signal_Analyzer_Demo

There are other syslink examples present in /usr/share/ti/ti-syslink-examples directory. Please refer to the
syslink documentation in component-sources/syslink_x_xx_xx_xx/docs to experiment on these examples.

Running the Codec Engine examples

The Codec Engine package comes with a small set of examples.

Note! The Codec Engine examples should not be run out with graphics. Please execute the following steps to
teardown the graphics plane and ensure that no firmware is running.

target # /etc/init.d/pvr-init stop
target # /etc/init.d/matrix-gui-e stop
target # /etc/init.d/load-hdvicp2-firmware.sh stop
target # /etc/init.d/load-hdvpss-firmware.sh stop

To run the application, enter the following set of commands on the target:

target # cd /usr/share/ti/ti-codec-engine-examples

Ensure that cmem module is installed with memory configuration as below

target # modprobe cmemk phys_start=0x94000000 phys_end=0x947fffff \
pools=20x4096,10x131072,2x1048576

To run the audio1_copy example, you will need to run the following commands.

target # cd audio1_copy

target # ./app_remote.xv5T

To run other examples, please refer the Codec Engine documentation.

Running the C6Run examples

The C6Run package comes with a small set of applications to demonstrate its usage.

Note! The C6Run samples cannot be run if OMTB is running. If you have clicked on the 1080p60
Encode/Decode icon or have manually run OMTB from the command prompt, then it is necessary to reboot
the board before running C6Run samples.

Note! The C6Run samples cannot be run without first bringing down the graphics plane. Please run the
following commands first.

target # /etc/init.d/pvr-init stop
target # /etc/init.d/matrix-gui-e stop
target # /etc/init.d/load-hdvicp2-firmware.sh stop
target # /etc/init.d/load-hdvpss-firmware.sh stop

To run the application, enter the following set of commands on the target:

target # cd /usr/share/ti/c6run-apps

DM814x C6A814x AM387x EZ Software Developers Guide

Running the SysLink examples 7

The cmem and syslink modules need to be installed. So ensure that cmem module is re-installed with new
memory configuration as below

target # modprobe syslink
target # modprobe cmemk phys_start=0x96C00000 phys_end=0x98000000 allowOverlap=1

Execute the following command to run the example application

target # cd examples/c6runapp/hello_world
target # ./hello_world_dsp

Running the C6Accel apps

The C6Accel package comes with a small test application benchmarks all the DSP kernel APIs for fixed point
and floating point calculations.

Note! The C6Accel apps should not be run out with graphics. Please execute the following steps to teardown
the graphics plane and ensure that no firmware is running.

target # /etc/init.d/pvr-init stop
target # /etc/init.d/matrix-gui-e stop
target # /etc/init.d/load-hdvicp2-firmware.sh stop
target # /etc/init.d/load-hdvpss-firmware.sh stop

To run the application, enter the following set of commands on the target:

target # cd /usr/share/ti/c6accel-apps/c6accel_dsplib_testapp

Ensure that cmem module is installed with memory confiration as below

target # modprobe cmemk phys_start=0x96C00000 phys_end=0x98000000 pools=20x4096

Execute the following command to run the example application

target # ./c6accel_dsplib_testapp

The application benchmarks all the DSP kernel API calls in C6Accel and writes the benchmark data to file
(benchmarking.txt) in the /usr/share/ti/c6accel-apps directory. To view the file, execute

target # vi /usr/share/ti/c6accel-apps/c6accel_dsplib_testapp/benchmarking.txt

Running the Qt/Embedded examples

The Qt embedded comes with some examples applications. To see the examples that are available, check out
this directory on the target:

target # cd /usr/bin/qtopia/examples
target # ls

Execute the following command to run Qt/e calendar example application.

DM814x C6A814x AM387x EZ Software Developers Guide

Running the C6Run examples 8

Note! - You should quit the Matrix GUI application before running Qt/Embedded examples.

target # cd /usr/bin/qtopia/examples/richtext/calendar
target # ./calendar -qws -geometry 320x200+50+20

After you see the calendar interface, hit CTRL-C to terminate it

Running the Graphics SDK examples

The Graphics SDK comes with some examples applications. To see the examples that are available, check out
this directory on the target:

target # cd /usr/bin/SGX/demos/Raw
target # ls

Here is the list of apps you will see:

OGLES2ChameleonMan OGLESEvilSkull OGLESPolyBump

OGLES2Coverflow OGLESFilmTV OGLESShadowTechniques

OGLES2FilmTV OGLESFiveSpheres OGLESSkybox

OGLES2PhantomMask OGLESFur OGLESTrilinear

OGLES2Shaders OGLESLighting OGLESUserClipPlanes

OGLES2Skybox2 OGLESMouse OGLESVase

OGLES2Water OGLESOptimizeMesh

OGLESCoverflow OGLESParticles

Execute the following command to run 3D Graphics application, this particular example is for an album
coverflow.

target # ./OGLES2Coverflow

After you see the output on the display interface, hit q to terminate it

Using the devkits
At the top level directory of the EZSDK you will find one or more devkits, typically linux-devkit and
dsp-devkit. The devkits are:

The tools, libraries and headers to develop applications for a specific hardware subsystem (e.g. the
arm or the dsp).

1.

The devkits are relocatable, meaning you can move them to another location on your filesystem and
they will still work (see #Moving the devkits below).

2.

DM814x C6A814x AM387x EZ Software Developers Guide

 Using the devkits 9

The devkits do not contain source code or build files. If you want to change components, or make a
change to a component, the devkit will need to be regenerated, see #Regenerating the devkits below.

3.

The devkits contain the documentation of the TI components in one location.4.

The devkits were introduced to provide a more unified view of what is available for each hardware subsystem
and present a system view of the software in the EZSDK as opposed to a component view. Since they are
relocatable, they are also easier for a user to check in to version control.

Note! The components themselves are still available from the ${EZSDK}/component-sources directory, and
the ${EZSDK}/Rules.make file still points to all the right component directories. If you do not wish to build
against the devkits, but directly against the components, this is still possible.

Regenerating the devkits

You may need to regenerate the devkit because you changed a component version, in which case you (Codec
Engine example):

Download the new Codec Engine release from the web.1.
Read the release notes to make sure all dependencies are satisfied, or you may have to update more
components.

2.

Extract the downloaded release on your target filesystem, and update the CE_INSTALL_DIR variable
in ${EZSDK}/Rules.make to point to the new location.

3.

Enter the ${EZSDK} directory.4.
Clean the EZSDK by executing make clean so that files not relevant to your target (linux, dsp etc.)
don't get copied.

5.

Make sure the components are compiled for Linux by executing make components_linux.6.
Execute make linux-devkit to populate the linux-devkit with the TI components.7.
Clean the EZSDK by executing make clean.8.
Make sure the components are compiled for the DSP by executing make components_dsp.9.
Execute make dsp-devkit to populate the dsp-devkit with the TI components.10.

If you have modified a component, in which case the support TI will be able to provide is limited, you can
regenerate the devkits using only the last 7 steps above.

Note that not all components contribute to all devkits. You may only have to regenerate e.g. the dsp-devkit if
you update or change sysbios.

Verifying the devkit integrity

When the devkits are created, two files are generated at the devkit's top level directory:

install.log contains the TI components and versions used in the devkit.1.
md5sums contains the md5sums of all files in the devkit.2.

In addition, the ${EZSDK}/docs directory contains the md5sums of the devkits at the time of release.

If a file has been changed, or a component updated, the md5sums will have changed. To verify whether this is
the case for e.g. the dsp-devkit, enter the dsp-devkit directory and execute:

$ md5sum -c ${EZSDK}/docs/dsp-devkit.md5sums | grep -v OK$

DM814x C6A814x AM387x EZ Software Developers Guide

 Regenerating the devkits 10

If there is no output from this command, your integrity with the devkit released by TI is ok. If there is an
error, the offending files will be printed.

Moving the devkits

The devkits are relocatable, whereas the rest of the EZSDK is not. This means that you can put the devkits in
any directory on your Linux filesystem, as long as you do the following (dsp-devkit example):

If you want to be able to regenerate the dsp-devkit (see #Regenerating the devkits, you'll need to
update the DSP_DEVKIT_DIR variable in ${EZSDK}/Rules.make.

1.

Before building against the dsp-devkit from the command line, you need to "source" the
environment-setup script (don't forget the .):

2.

$. /path/to/dsp-devkit/environment-setup

Note! For the linux-devkit you will currently have to edit the first line of
${EZSDK}/linux-devkit/environment-setup to change the SDK_PATH variable to point to your new location.
You can get your new location by executing the following in the linux-devkit directory:

$ pwd

Note! The dsp-devkit does not contain xdctools. If you need to relocate the devkit, the path to xdctools needs
to be updated in dsp-devkit/environment-setup.

EZSDK software overview

DM814x C6A814x AM387x EZ Software Developers Guide

 EZSDK software overview 11

Overview of the EZ SDK Software stack

The EZ SDK contains many software components which are accessed by DaVinci, Integra and Sitara products
. There are components which are accessed only by Integra devices(BLUE in color), some only by DaVinci
devices and some by Sitara Devices. Some are developed by Texas Instruments and some are developed in
and by the open source community(White). TI contributes, and sometimes even maintains, some of these open
source community projects, but the support model is different from a project developed solely by TI.

Creating a Linux application

DM814x C6A814x AM387x EZ Software Developers Guide

 Creating a Linux application 12

http://ap-fpdsp-swapps.dal.design.ti.com/index.php/File:Dm816x_c6a816x_am389x_software_overview.jpg

Overview of a basic Linux application component usage

While creating a basic Linux application you are typically using the following components of the stack (the
rest are greyed out above):

Component Purpose in this application Location in the EZSDK

CodeSourcery
GCC toolchain

Cross compiler for generating
ARM Linux binaries. User specified location outside the EZSDK

Open Source
Linux libraries

Provides libraries such as
libpng, libusb, libz, libcurl etc.

linux-devkit/arm-none-linux-gnueabi/lib and
linux-devkit/arm-none-linux-gnueabi/usr/lib/

Platform Support
Package

Provides device drivers for the
EVM and documentation and
examples to support them.

board-support

Linux kernel The Linux kernel with the PSP
device drivers board-support/linux-kernel-source

You can find examples all over the web on how to write this type of application. The PSP examples are a
good reference on how to access the peripheral drivers specific to this platform.

Creating a SYS/Link application

DM814x C6A814x AM387x EZ Software Developers Guide

 Creating a SYS/Link application 13

http://ap-fpdsp-swapps.dal.design.ti.com/index.php/File:C6a816x_am389x_psp_overview.jpg

Overview of a SYSlink application component usage

SYS/Link(SysLink) is foundation software for the inter-processor communication across the HLOS-RTOS
boundary. It provides a generic API that abstracts the characteristics of the physical link connecting HLOS
and RTOS from the applications. It eliminates the need for customers to develop such link from scratch and
allows them to focus more on application development.

SysLink provides several features and capabilities that make it easier and more convenient for developers
using a multi-core system:

Provides a generic API interface to applications•
Hides platform/hardware specific details from applications•
Hides HLOS operating system specific details from applications, otherwise needed for talking to the
hardware (e.g. interrupt services)

•

Applications written on SysLink for one platform can directly work on other platforms/OS
combinations requiring no or minor changes in application code

•

Makes applications portable•
Allows flexibility to applications of choosing and using the most appropriate high/low level protocol•
Provides scalability to the applications in choosing only required modules from SysLink.•

In addition to the components used for the basic Linux app, these are used (and the rest is greyed out in the
diagram above):

Component Purpose in this application Location in the EZSDK

SYS/BIOS Real-Time Operation System for TI DSPs component-sources/sysbios_x_xx_xx_xx

SysLink HLOS to RTOS communication link for
passing messages and data in

component-sources/syslink_x_xx_xx_xx

DM814x C6A814x AM387x EZ Software Developers Guide

 Creating a SYS/Link application 14

http://ap-fpdsp-swapps.dal.design.ti.com/index.php/File:C6a816x_am389x_syslink_overview.jpg

multiprocessor systems

IPC RTOS communication link for passing
messages and data communication component-sources/ipc_x_xx_xx_xx

Platform Support
Package

Provides device drivers for the EVM and
documentation and examples to support
them

board-support

C6000 Code
Generation Tools TI DSP code generation tools dsp-devkit/cgt6x_x_x_xx

Good application examples to start from include:

The sample applications (component-sources/syslink_x_xx_xx_xx/packages/ti/syslink/samples
provide simpler and smaller examples on how to use SysLink.

•

Creating a C6Accel application

Overview of a basic C6Accel application component usage

The C6Accel package wraps key DSP software kernels in an xDAIS algorithm which can be invoked from the
ARM side using simple API calls. C6Accel can be used in a plug and play like any other codec used for
encoding and decoding audio and video streams. C6Accel is built in the codec engine compliant IUniversal
framework and can be used on various DSP only and ARM + DSP devices.

The purpose of C6Accel is to provide the ARM user with the compute power of the DSP on computational

DM814x C6A814x AM387x EZ Software Developers Guide

 Creating a C6Accel application 15

http://ap-fpdsp-swapps.dal.design.ti.com/index.php/File:C6a816x_am389x_x6accel_software_overview.jpg

intense tasks like running Color Space Conversion, Filtering or Image/Signal Processing algorithm. The
library of DSP kernels wrapped in C6Accel are optimized for performance on the DSP core and would allow
the ARM user to use the DSP as an accelerator for their application. By using these routines, the ARM
developer can develop a more compelling application by achieve execution speeds considerably faster than
equivalent C code written on ARM. In addition, by providing ready-to-use DSP kernels, C6Accel can
significantly shorten the ARM application development time.

The benefits of using C6Accel include:

Ready to use kernels: Library of Optimized DSP kernels wrapped in a single package. Reduces
learning curve and time to market.

1.

Easy to interface: ARM side API library abstracts complexities while invoking DSP functionality
from ARM application

2.

Easy Portability: Fully compatible with most TI C6x devices3.
Efficient multiple call execution: Capabilty to chain kernel calls using single call to codec engine4.
Easy Evaluation of DSP performance: DSP kernel Benchmarks (cycle and code size) provided in
C6Accel aid in evaluating performance that can be leveraged from the DSP and make informed
decisions while developing applications

5.

Parallel processing: Asynchronous calling mode enables parallel processing on DSP and ARM6.
Simple Template to add functionality on DSP: SoC developers can explore maximum flexibility by
using C6Accel algorithm as a template to add custom compute intense functionality on the DSP that
can be accessed from the ARM.

7.

In addition to the components used for the Linux app, these are used (and the rest is greyed out in the diagram
above):

Component Purpose in this application Location in the EZSDK

Codec
Engine

Cross platform framework for the
applications invoking multimedia codecs
and other algorithms.

component-sources/codec_engine_xx_xx_xx_xx

LinuxUtils

Linux specific utilities for Framework
Components assisting with resource
allocation of DMA channels (EDMA
module), physically contiguous memory
(CMEM module, see this wiki topic for
more information) and allows the codecs
to receive completion interrupts of
various coprocessor resources (IRQ
module).

component-sources/linuxutils_xx_xx_xx_xx

RTSC
(XDC)

Tool used to configure Codec Engine,
Framework Components and multimedia
codecs for your application.

component-sources/xdctools_xx_xx_xx_xx

XDAIS

TI Algorithm Interface Standard used for
algorithm standardization which is used
by various other components including
Codec Engine

component-sources/xdais_x_xx_xx_xx

SysLink component-sources/syslink_x_xx_xx_xx

DM814x C6A814x AM387x EZ Software Developers Guide

 Creating a C6Accel application 16

http://processors.wiki.ti.com/index.php/CMEM_Overview
http://processors.wiki.ti.com/index.php/CMEM_Overview

HLOS to RTOS communication link for
passing messages and data in
multiprocessor systems

IPC RTOS commmunication link for passing
messages and data component-sources/ipc_x_xx_xx_xx

Good application examples to start from include:

The C6Accel contains a sample application to test/validate the functionality. The application is
located in the component-sources/c6accel_xx_xx_xx_xx/soc/app directory.

•

For more information on C6Accel visit C6Accel: ARM access to DSP software

Creating a C6Run application

Overview of a basic C6Run application component usage

The C6Run package is to ease initial development and loading of DSP code for ARM developers who are
familiar with building applications for the Linux OS using an ARM GCC cross-compiler. The project consists
of two main components:

A build system to create back-end libraries from the various TI software technologies and the code of
the C6Run project itself

1.

Front-end scripts that wrap the TI C6000 code generation tools in a GCC-like interface and also make
use of the back-end build system to create ARM-side executables or libraries that transparently make

2.

DM814x C6A814x AM387x EZ Software Developers Guide

 Creating a C6Run application 17

http://processors.wiki.ti.com/index.php/C6Accel:_ARM_access_to_DSP_software_on_TI_SoCs
http://ap-fpdsp-swapps.dal.design.ti.com/index.php/File:C6a816x_c6run_overview.jpg

use of the DSP.

There are two uses of the C6Run project, exposed through two different front-end scripts. They are called
C6RunLib and C6RunApp.

C6RunLib works to build a static ARM library from C source files that can be linked with an ARM
application and provide access to the DSP when library functions are called. This allows the user to
keep portions of the application on the ARM and move other portions to the DSP.

•

C6RunApp tool acts as a cross-compiler for the DSP, allowing portable C applications to be rebuilt
for the C6000 DSP core of various Texas Instruments heterogeneous (ARM+DSP) processors. The
C6RunApp front-end consists of a single script, called c6runapp-cc. This use of this script matches, as
much as possible, the use of GCC. It can compile C code to C6000 object files and link the C6000
object files into an application. When performing linking operations, the tool makes use of a number
of steps (including linking using the C6000 code generation tools) to create an ARM-side executable
from the DSP object files.

•

In addition to the components used for the Linux app, these are used (and the rest is greyed out in the diagram
above):

Component Purpose in this application Location in the EZSDK

LinuxUtils

Linux specific utilities for Framework
Components, used for allocating physically
contiguous memory (CMEM module, see
this wiki topic for more information) for
sharing data between the ARM and DSP.

component-sources/linuxutils_xx_xx_xx_xx

RTSC (XDC) Tool required to configure and build
DSP/BIOS real-time kernel for the DSP. component-sources/xdctools_xx_xx_xx_xx

Sys/BIOS Real-Time Operation System for TI DSPs component-sources/sysbios_x_xx_xx_xx

SysLink
HLOS to RTOS processor communication
link for passing messages and data in
multiprocessor systems

component-sources/syslink_x_xx_xx_xx

IPC RTOS communication link for passing
messages and data communication component-sources/ipc_x_xx_xx_xx

C6000 Code
Generation
Tools

TI DSP code generation tools dsp-devkit/cgt6x_x_x_xx

Good application examples to start from:

The C6Run package contains sample applications to test/validate the functionality. The applications
are located in the component-sources/c6run_xx_xx_xx_xx/examples and the
component-sources/c6run_xx_xx_xx_xx/test directories. Each example includes full source and
standard makefiles.

•

DM814x C6A814x AM387x EZ Software Developers Guide

 Creating a C6Run application 18

http://processors.wiki.ti.com/index.php/CMEM_Overview

There is a QT-based fractal example that leverages C6Run to perform the fractal computation on the
DSP. Information on how to build and run the example can be found at: C6Run QT Fractal Example

•

For more information on C6Run visit the TI Embedded Processors wiki, C6Run Project Page.

Creating an OpenMax IL application

Overview of a basic OMX application component usage

The OpenMax IL package wraps key Multimedia functions which can be invoked from the ARM side using
simple API calls. In addition to the components used for the Linux app, these are used (and the rest is greyed
out in the diagram above):

Component Purpose in this application Location in the EZSDK

OpenMax
OpenMax IL multimedia framework for the
applications invoking multimedia codecs and
other algorithms.

component-sources/omx_xx_xx_xx_xx

DM814x C6A814x AM387x EZ Software Developers Guide

 Creating an OpenMax IL application 19

http://processors.wiki.ti.com/index.php/C6Run_QT_Fractal_Example
http://processors.wiki.ti.com/index.php/C6Run_Project
http://ap-fpdsp-swapps.dal.design.ti.com/index.php/File:Dm816x_omx_overview.jpg

SysLink HLOS to RTOS communication link for passing
messages and data in multiprocessor systems component-sources/syslink_x_xx_xx_xx

Creating a Qt/Embedded application

Overview of a Qt/Embedded application component usage

Qt/Embedded is a Graphical User Interface toolkit for rendering graphics to the Linux framebuffer device, and
is included in this kit. The base Qt toolkit on the other hand renders the graphics to the X11 graphical user
interface instead of to the basic framebuffer.

In addition to the components used for the basic Linux app, these are used (and the rest is greyed out in the
diagram above):

Component Purpose in this application Location in the EZ SDK

Qt/Embedded Provides a Graphical User
Interface toolkit linux-devkit/arm-none-linux-gnueabi/usr/lib/libQt*

SysLink
HLOS communication link for
passing messages and data in
multiprocessor systems

component-sources/syslink_x_xx_xx_xx

Platform Support
Package

Provides device drivers for the
EVM and documentation and
examples to support them.

board-support

See the Qt Reference Documentation on various API's and its usages. You can also download some Qt/e
example applications from Qt Examples web page.

DM814x C6A814x AM387x EZ Software Developers Guide

 Creating a Qt/Embedded application 20

http://ap-fpdsp-swapps.dal.design.ti.com/index.php/File:C6a816x_am389x_qt_overview.jpg
http://doc.trolltech.com/4.6/index.html
http://doc.trolltech.com/4.6/examples.html

Compiling an application
EZ SDK Linux development kit includes the Qt/Embedded host tools and development header and libraries.

1. First, configure your cross compilation environment #Setting_up_cross_compilation_environment.

2. Next, follow the typical Qt/e recommended method for cross compiling your application on host.

host $ cd <directory where your application is>

host $ qmake -project host $ qmake host $ make

Matrix User's Guide

Please refer to the The Matrix User's Guide for more information.

Additional Procedures

Setting up cross compilation environment

To enable your application development, EZ SDK comes with linux-devkit which contains package header,
libraries and other package dependent information needed during development. Execute the following
commands to configure your cross compilation environment

host $ source ${EZSDK}/linux-devkit/environment-setup

The above command will export cross compilation specific environment variables.

You will notice that the command will add [linux-devkit] to your bash prompt to indicate that you have
exported the required cross compiler variables.

Rebuilding the EZ SDK components

The EZ SDK has provided a top level Makefile to allow the re-building of the various components within the
EZSDK.

Note: The EZ SDK component build environment is self contained and doesn't require the
#Setting_up_cross_compilation_environment thus should be avoided to prevent possible build failures.

Rebuild the EZSDK components by first entering the EZ SDK directory using:

host $ cd ${EZSDK}

The EZ SDK makefile has a number of build targets which allows you to rebuild the EZSDK components. For
a complete list execute:

host $ make help

DM814x C6A814x AM387x EZ Software Developers Guide

 Additional Procedures 21

http://processors.wiki.ti.com/index.php/Matrix_Users_Guide

Some of the components delivered in the EZ SDK are not pre-built. The provided 'make clean' & 'make
components' build targets are designed to clean and build all components (e.g. Linux Kernel, CMEM, DMAI,
etc.) for which a build is compulsory to begin application development. These components must first be
cleaned and then rebuilt by the user before the user attempts to rebuild anything else. To do this, simply run

host $ make clean
host $ make components

After that, each of the build targets listed by 'make help' can then be executed using:

host $ make <target>_clean
host $ make <target>
host $ make <target>_install

In order to install the resulting binaries on your target, execute one of the "install" targets. Where the binaries
are copied is controlled by the EXEC_DIR variable in ${EZSDK}/Rules.make. This variable is set up to
point to your NFS mounted target file system when you executed the EZ SDK setup (setup.sh) script, but
can be manually changed to fit your needs.

You can remove all components generated files at any time using:

host $ make clean

And you can rebuild all components using:

host $ make all

You can then install all the resulting target files using:

host $ make install

Creating your own Linux kernel image

The pre-built Linux kernel image (uImage) provided with the EZSDK is compiled with a default
configuration. You may want to change this configuration for your application, or even alter the kernel source
itself. This section shows you how to recompile the Linux kernel provided with the EZSDK, and shows you
how to boot it instead of the default Linux kernel image.

1. If you haven't already done so, follow the instructions in #Setting_up_the_EZ_SDK to setup your build
environment.

2. Recompile the kernel provided with the EZSDK by executing the following:

host $ cd ${EZSDK}
host $ make linux_clean
host $ make linux
host $ make linux_install

3. You will need a way for the boot loader (u-boot) to be able to reach your new uImage. TFTP server has
been setup in the #Setting_up_the_EZ_SDK section.

DM814x C6A814x AM387x EZ Software Developers Guide

Rebuilding the EZ SDK components 22

4. Copy your new uImage from the EXEC_DIR specified in the file ${EZSDK}/Rules.make to the tftpserver:

host $ cp ${HOME}/targetfs/home/root/dm814x/boot/uImage /tftpboot

5. Copy the exported Linux kernel modules from the EXEC_DIR to the /lib/modules directory:

host $ sudo cp -r ${HOME}/targetfs/lib/modules ${HOME}/targetfs/lib/modules_original
host $ sudo cp -r ${HOME}/targetfs/home/root/dm814x/lib/modules ${HOME}/targetfs/lib

6. Run the u-boot script and follow the instructions. Select TFTP as your Linux kernel location and the file
'uImage' as your kernel image.

host $ ${EZSDK}/bin/setup-uboot-env.sh

Note! In this release of the EZ SDK, U-Boot does not read the MAC Address from eFuses. As a result the
ethernet MAC Address needs to be set manually by choosing a valid random MAC Address. More details are
available in the PSP U-Boot documentation. Please run the following command to set the ethernet MAC
Address

u-boot :> set ethaddr <value of the MAC address chosen>

7. Note that when you change your kernel, it is important to rebuild the kernel modules supplied by the
EZSDK sub-components. You can find a list of these modules under the directory
/lib/modules/2.6.32-rc2-davinci1/kernel/drivers/dsp/ (replace 2.6.32-rc2-davinci1 with the version of the
kernel applicable to your platform)

host $ ls ${HOME}/targetfs/lib/modules/2.6.32-rc2-davinci1/kernel/drivers/dsp/

For each module that you see listed, you should go back to the host, rebuild it, and replace the file with the
one from your EXEC_DIR. E.g. for cmemk.ko

host $ cd ${EZSDK}
host $ make cmem_clean
host $ make cmem
host $ make cmem_install
host $ sudo mv ${HOME}/targetfs/lib/modules/2.6.32-rc2-davinci1/kernel/drivers/dsp/cmemk.ko \
${HOME}/targetfs/lib/modules/2.6.32-rc2-davinci1/kernel/drivers/dsp/cmemk.ko.orig
host $ sudo cp ${HOME}/targetfs/home/root/dm814x/cmem/cmemk.ko \
${HOME}/targetfs/lib/modules/2.6.32-rc2-davinci1/kernel/drivers/dsp

8. After updating all modules, start minicom or Tera Term and power-cycle the board. The new kernel will
now be loaded over TFTP from your Linux host.

Setting up Tera Term

Tera Term is a commonly used terminal program on Windows. If you prefer to use it instead of Minicom, you
can follow these steps to set it up.

1. Download Tera Term from this location, and start the application.

2. In the menu select Setup->General... and set:

DM814x C6A814x AM387x EZ Software Developers Guide

Creating your own Linux kernel image 23

http://hp.vector.co.jp/authors/VA002416/ttermp23.zip

Default port: COM1

3. In the menu select Setup->Serial Port... and set the following:

Port: COM1
Baud rate: 115200
Data: 8 bits
Parity: none
Stop: 1 bit
Flow control: none

NOTE: Kernel Bootargs can be generated by running the setup script. See the section
#Setting_up_the_EZ_SDK for details on running the setup script.

How to create an SD card

This section explained the procedure required for creating SD card image for dm814x and the steps has been
verified on 2GB, 4GB and 8GB SD cards.

1. Plug an SD card on Linux host machine.

2. Run dmesg command to check the device node. Triple check this to ensure you do not damage your HDD
contents!

host $ dmesg
 [14365.272631] sd 6:0:0:1: [sdb] 3862528 512-byte logical blocks: (1.97 GB/1.84 GiB)
 [14365.310602] sd 6:0:0:1: [sdb] Assuming drive cache: write through
 [14365.325542] sd 6:0:0:1: [sdb] Assuming drive cache: write through
 [14365.325571] sdb: sdb1 sdb2

In this example, SD card is detected on /dev/sdb.

3. Run mksdboot script installed in EZ SDK as show below
host $ sudo ${EZSDK}/bin/mksdboot.sh --device /dev/sdb --sdk ${EZSDK}

Wait for script to complete. On successful completion, remove the SD card from the host PC.

4. Power OFF the dm814x EVM.

5. Set the SW1 switch to boot from SD.

SW1 = 000001010111 (high to low, i.e. SW1.1 = 1)•
1 = "On" position on the switch•

6. Insert the SD card into the dm814x EVM.

7. Power ON the EVM.

DM814x C6A814x AM387x EZ Software Developers Guide

Setting up Tera Term 24

Note! If your flash already has a u-boot environment stored, this will get picked up even while booting from
SD-card. If this is the case, halt the u-boot auto boot process and enter the following command to erase the
NAND environment variables:

u-boot :> nand erase 0x260000 0

Note! If you want to recreate the full SD card with a separate partition for the EZSDK installer and the CCSv5
installer execute the following:

host $ sudo ${EZSDK}/bin/mksdboot.sh --device /dev/sdb --sdk ${EZSDK} \
/path/to/ezsdk_dm814x-evm_5_xx_xx_xx_xx_setuplinux setup_CCS_5.x.x.xxxxx.tar.gz

This takes significant extra time so it's not part of the default instructions.

How to copy boot loaders to NAND flash

Please refer the U-boot documentation under the psp folder in your EZ SDK installation for the procedure
required for copying boot loaders (MLO and u-boot) on NAND flash.

How to change the display resolution

The EZ SDK supports multiple displays resolutions but by default boots with 720p60 resolution. To change
the resolution on your display, you can execute the following command. The command below demonstrates
resolution change to 1080p60. In a similar manner, the resolution can be set to 720p60, 1080i60, 1080p30 and
1080p60.

target # cd /usr/share/ti/ti-media-controller-utils
target # ./change_resolution.sh 1080p60

Note! You will need to reboot your board after executing the above command.

How to change the display from LCD to HDMI

The EZ SDK supports multiple displays but by default displays on the LCD. To change the display to HDMI ,
you can execute the following command. In a similar manner, the display can be changed back to LCD.

target # cd /usr/share/ti/ti-media-controller-utils
target # ./change_display.sh hdmi

Note! You will need to reboot your board after executing the above command.

FAQ

Frequently Asked Questions on The EZ SDK are available at EZ SDK FAQ. This information is also located
in the docs/ folder along with other documents.

DM814x C6A814x AM387x EZ Software Developers Guide

How to create an SD card 25

http://ap-fpdsp-swapps.dal.design.ti.com/index.php/EZ_SDK_FAQ

	DM814x C6A814x AM387x EZ Software Developers Guide

