I3 TEXAS
INSTRUMENTS

Application Report
SLAA263D-September 2005—Revised April 2013

Advanced Debugging Using the
Enhanced Emulation Module (EEM)

Stefan Schauer MSP430

ABSTRACT

This document shows the benefits of the Enhanced Emulation Module (EEM) advanced debug features of
the MSP430 devices and how they can be used using IAR Embedded Workbench™ version 5.51 software
development tool.

The EEM advanced debugging features support both precision analog and full-speed digital debug. The
configuration of the debug environment for maximum control and the use of the embedded trace capability
are shown. Some techniques that allow rapid development and design-for-testability are demonstrated.

Related code files can be downloaded from www.ti.com/lit/zip/slaa263.

Contents
1 10T [ox 1T 2
2 I 10 =T £ 2
3 2 L= =140 01 P 2
4 R E= L= (0] =T [6
5 Yo 1Yz L Tod=To I I o o = g 01T L 6
6 (4 (o T3 Q@0 o1 1o N 7
7 (0301 o T | (= 7
8 (0] 1S3 o =1 = 1o g =S 8
9 Emulation Module Implementation SUMMAIY ...uiceeeiriieeersaineesraanneessansnessaanrrsssannressasnneesssnnnersnns 8
10 C-Spy Internal BreakpOiNt USBOE ..ueuueteiueeinutertsiantssisssatsiasssasesasstasssanssaanerasstsnnssannsannsinnnins 9
11 2 =T 1= 0T 9
Y o] 0 1= T [AN == 0 o] = 10
List of Figures
1 (0] o 11 o g F= TN =7 1= T2q 01T gL 0 =1 o 3
2 Conditional Breakpoint Dialog fOr REQISIET ueeiieteiii it r e s s s s s raanra s sranr e s aannes 4
3 Setting @ RANGE Bre@kPOINTuvuee et e s s s s s at s s s san s saa s sasssanssannssansannns 5
4 I 1L (0] Vo = o 10 6
List of Tables
1 EmMulation MOOUIE OVEIVIEW ...uuiueisiisiitisise sttt e r et e a e s e rnnaes 8

All trademarks are the property of their respective owners.

SLAA263D-September 2005—Revised April 2013 Advanced Debugging Using the Enhanced Emulation Module (EEM) 1
Submit Documentation Feedback

Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com/lit/zip/slaa263
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA263D

13 TEXAS

INSTRUMENTS
Introduction www.ti.com
1 Introduction
Within every MSP430 flash-based microcontroller, there is on-chip debug logic. This Enhanced Emulation
Module (EEM) provides different levels of debug features, depending on the device being used. This
application report shows how the EEM can be used to solve typical debug problems.
In general, the following features are available:
» Two to eight hardware breakpoints
e Complex breakpoints
» Break on read/write at specified address
» Protection of read/write areas within memory
» All timers and counters can be stopped (device dependent)
* PWM generation may not be stopped on emulation hold
» Single step/step into and over/run in real-time
e Full support of all low-power modes
e Support for DCO dependencies such as temperature and voltage
NOTE: All examples in this application report are based on IAR version 5.51. Many of the other
debuggers have the same or similar features. For details about using these other debuggers,
see the user's guide of the dedicated debugger.
2 Triggers
The event control in the EEM of the MSP430 system consists of Triggers, which are internal signals
indicating that a certain event has happened. These Triggers may be used as simple breakpoints, but it is
also possible to combine two or more Triggers to allow detection of complex events. In general, the
Triggers could be used to control the following functional blocks of the EEM:
» Breakpoints
» State storage
e Sequencer
There are two fundamental different types of Triggers, one for the address and data bus and the other for
the CPU registers. It is also possible to define under which condition the Trigger is active. Such conditions
include reading, writing, or fetching of an instruction. These Triggers can also be combined, so that a
Trigger gives a signal if a particular value is written into a dedicated address.
3 Breakpoint
Triggers are used to configure breakpoints. This very flexible system allows the definition of various
powerful breakpoints.
3.1 Address Breakpoints
A simple code breakpoint in this context would be a Trigger with a certain value (instruction address) on
the address bus combined with the fetch signal of the CPU.
For the address breakpoints, one Trigger is used.
2 Advanced Debugging Using the Enhanced Emulation Module (EEM) SLAA263D-September 2005—Revised April 2013

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA263D

13 TEXAS
INSTRUMENTS

www.ti.com Breakpoint

3.2 Data Breakpoints

Another type of breakpoints — data breakpoints — can be configured by using one or two Triggers. A data
break could be used to check for a certain value on the address bus (memory address of the variable)
combined with a read and/or write signal. It could also be enhanced, so that the break only occurs if a
specific value is read or written into this address. This value is then checked on the data bus.

For a data breakpoint without a value, one Trigger is used, and for a data breakpoint with a value, two
Triggers are used.

Variable Name Compare Mode Access Type
Edit Breakpoint x|
g Conditional
Ereak: At

IIDDpCDunter Edit... |
~Type ——— 1 Opdgrator Access —Mask ——
¥ Address bus (MAE) == " Read [Enable
" Data bus (MDE) e i~ Wirte / I (eFFFFF
Ate | ————

" Register w= {* Read

— Condition 'I /
MDE Value
Access
" Bead
- [T Storage
{* ReadWrite

i
oK/ | Cancel |
i
;
Variable Value (if set, Action if Trigger is activated:
a 2nd trigger is used) -Immediate break for the system

-Trigger for State Storage (Trace)

Figure 1. Conditional Breakpoint Dialog

SLAA263D-September 2005—-Revised April 2013 Advanced Debugging Using the Enhanced Emulation Module (EEM) 3

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA263D

13 TEXAS

INSTRUMENTS
Breakpoint www.ti.com
3.3 Register Breakpoints
The same observation methods can be used for the CPU registers. This can be a very powerful tool if the
program is written in assembler, where the programmer has complete control over the usage of the
registers. Dedicated registers might be used for a variable or a system state flag. One register is very
critical and worth observing very carefully, the stack pointer. If there is a problem within the program that
allows the stack to run into the data area, it is often very difficult to find the problem with normal
debugging features, as the symptoms may change each time program execution is started. A simple
breakpoint, which stops the microcontroller when the stack pointer reaches a certain value or is below a
certain value, helps detect such problems quite easily. To setup this Trigger, one of the Register Triggers
is used.
Register Name Compare Mode Access Type
Edit Breakpoint x|
|sP Ed'rt;..l
~Type ———— r Opergtor Agcess Mask ———
" Address bus (MAB) | | & —- " Read [Enable
" Data bus (MDE) " 3= + Wite [oFFrFF
(e : = = " Read/Write
= " Fetch
 Condition
Register Value
Access
" Read
i~ Wite
{* Read/Write
oK .-' I Cancel
/
!
Register Value Action if Trigger is activated:
-Immediate break for the system
-Trigger for State Storage (Trace)
Figure 2. Conditional Breakpoint Dialog for Register
NOTE: When using an MSP430X CPU (MSP430FG46Xx), a second breakpoint is required for
observing the stack pointer (SP) due to the speed improvement on the MSP430X CPU. Set a
Conditional Breakpoint on an MAB write access with the address of the SP limit.
3.4 Mask Register
The Mask Register in the Conditional Breakpoint dialog can limit the check to only certain bits (according
to the mask) of the register. This could be used, for example, to check if only a certain bit has been
set/reset in the specified register.
4 Advanced Debugging Using the Enhanced Emulation Module (EEM) SLAA263D-September 2005—Revised April 2013

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA263D

I

www.ti.com

TEXAS
INSTRUMENTS

Breakpoint

3.5

Range Breakpoints

Range breakpoints are necessary to check an access to the dedicated memory range. Some possible
conditions could be:

Break on Write to Flash — This allows a check to determine if, during program execution, a write
access into the flash memory area occurs. In many cases, this is not allowed (or is allowed only under
certain circumstances) and, therefore, could be considered as an erroneous write.

Break on Read/Write to Invalid Memory — This check could be used to evaluate if, during program
execution, any attempt to access data in invalid memory range occurs.

Break on Instruction Fetch out of Range — This breakpoint could stop the CPU if it fetches an
instruction from a memory address where no program is stored.

Break on Data out of Range — This Trigger gives a signal if the value at the data bus is inside or
outside the specified range. This could be used if the value in a certain variable should be observed for
this data range. To use this feature the Data Range Trigger must be combined with a write or read
Trigger on the variable address or the Trigger Sequencer. Otherwise, any value that appears on the
data bus and is in this range (for example, an instruction) could stop the CPU.

Range Start Range End/Length Access Type

Edit Breakpoint x|

Start value

I[‘a-;'HDD Edi...

— Bange delimiter
= End value
" Length /
" Mtomatic

[ecFFFF / Ed_rtI

~Type — 1 Access 7L Action Action when... —
{* Address (MAB)| [Read ¥ Break || Inside ange

" Data(MDB) ||© Wiite State
'\ ™ Read/Wite || [Storage

& Fetch Trigger

\ { QK I Cancel

MAB/MDB access Action if Trigger is activated:
-Immediate break for the system
-Trigger for State Storage

Figure 3. Setting a Range Breakpoint

SLAA263D-September 2005—-Revised April 2013 Advanced Debugging Using the Enhanced Emulation Module (EEM) 5
Submit Documentation Feedback

Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA263D

13 TEXAS

INSTRUMENTS
State Storage www.ti.com
4 State Storage
State storage can be used to save the information that is on the address and data bus. Additionally, some
flags of the CPU, such as Read/Write or Instruction Fetch are stored. There is a total depth of eight entries
available in the state storage buffer. The flexible configuration of this system makes it possible to record
the required information into the state storage buffer very efficiently, so that the required information can
be saved and displayed.
4.1 Default Configuration
A useful default configuration would be an instruction trace of the last few cycles before a breakpoint. To
enable this, select the state storage action on instruction fetch and set State Storage to Stop on trigger.
The breakpoint must also be configured to as State Storage Trigger in addition to Break. The result can
then be seen in the State Storage Window.
Signal to trigger
Activate State Storage State Storage
=
£
v Enable state ctorage State storage triggers
Conditional @ {main.c} 19.9 == [Mi
Trigger action Storage action
™ Start on trigger ™ Triggers
{* Stop on trigger % Instruction fetch
i MNone / i~ Al cydes
Set Trigger action List of triggers that are configured for
State Storage (see Breakpoints dialog)
Figure 4. State Storage Control
5 Advanced Trigger Options
5.1 Manually Combining Triggers
With the Breakpoint Combiner dialog (Emulator | Advanced menu), two or more individual Triggers can be
combined. When defining a complex Trigger with the manual combination of Triggers, the following points
should be considered:
« One Trigger (Sub-Trigger) is added to another Trigger (Main-Trigger) with an AND combination. The
Main-Trigger then contains the combination of the two Triggers.
» In a combination, only the reaction of the Main-Trigger is used. Sub-Triggers will no longer trigger a
reaction on their own.
5.2 Trigger on DMA Events
The Triggers are also able to differ between a memory access hosted by the CPU or by the DMA. If a
Trigger should be setup for the DMA, this must be done within the Advanced Trigger dialog. It is possible
to select from all possible access types and gain full control of all features of the Trigger.
6 Advanced Debugging Using the Enhanced Emulation Module (EEM) SLAA263D-September 2005—Revised April 2013

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA263D

I

TEXAS

INSTRUMENTS

www.ti.com Clock Control

6

6.1

6.2

6.3

Clock Control

A very important part of the debugging system is the flexible clock control. The clock should, of course, be
stopped on emulation hold, especially the main clock for the CPU but, depending on the application, there
could be different requirements to the clock for the peripheral modules, such as the UART module that
might transfer a character or a timer that is generating a PWM signal for a motor. Merely stopping these
peripherals could cancel a communication or even destroy the high-power circuit of the motor control unit.
The different clock control modules are listed below, and it is shown how they could be used. Table 1
shows which device has which implementation.

No Clock Control (e.g., 'F11x1,'F12x,'F13x/14x)

Modules may be clocked while the CPU is stopped by reading and writing to memory. So if, for example, a
timer interrupt is enabled while the program is executed in single step, the program is permanently in the
ISR.

NOTE: The only solution to single step with enabled timer interrupt is to clear the GIE bit in the
status register before starting to single step.

Standard Clock Control (e.g., 'F41x)

Standard clock control stops clocks for selected modules completely; other modules maintain a
continuously running clock. Clock control selection is hardwired. This means that it is possible to select if
all of ACLK, MCLK, or SMCLK on the device should be stopped on emulation hold or not.

Extended Clock Control (e.g., 'F15x/16x,'F43x/44x)

Extended clock control allows the same control as the standard clock control but additionally the clock
could be controlled on the module level. A generally recommended setting for this system is to stop all
clocks except the USART, ADC, and flash modules. This setting allows a data transmission, ADC
measurement, or write into the flash memory that was already started to be finished by the system, while
all other peripheral modules are stopped on a break condition.

Cycle Counter

The cycle counter can be used to profile code and count the number of clock cycles required to execute a
piece of code. It is displayed along with the regular CPU registers (View | Register | CPU Registers).

NOTE: On devices with a hardware cycle counter ('F(R)5xx/6xx), the measured cycles can be
slightly off due to releasing the device from and taking it back under debug control. Devices
without a hardware cycle counter will require single stepping.

SLAA263D-September 2005—Revised April 2013 Advanced Debugging Using the Enhanced Emulation Module (EEM) 7
Submit Documentation Feedback

Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA263D

13 TEXAS
INSTRUMENTS

Considerations www.ti.com

8 Considerations
» If the JTAG fuse has been blown, access to the emulation logic is disabled.

* When using a complex breakpoint, the CPU is stopped after the instruction causing the break has
been executed.

* When a break occurs, the current instruction is always completed before stopping execution.
e The EEM logic cannot prevent an invalid value from being written into a given address or register.

» Hardware registers, like the Timer_A counter (TAR), cannot be used for Triggers unless the CPU is
accessing this register during the time the required value are stored in the register.

9 Emulation Module Implementation Summary

Table 1 shows in a summary the differences of the implementations of the Emulation modules in the
different devices.

Table 1. Emulation Module Overview®

F15x | F20xx Eféi F543x
devce | P | pize | EIS | FIS | T e | e | rosgx | EAX | rodeus| TRA| 508 | o0
F26xx | F23xx — F551x
(T,\r,liggf,fﬂsDE) 2 2 3 8 2 3 2 2 8 8 8 3 3
<=/>=®@ - - X X - X - - X X X X X
R/W - - - X - X - - X X X X X
DMA - X - X - - = X - X X X X
16/20-bit Mask - - - X - X - - X X X X X
$§g'g'rr’”te' - - - 2 y 1 - - 2 2 2 1 1
<=/>=?) ® - - - X = X - - X X X X X
16/20-bit Mask - - - X - X - - X X X X X
Combination 2 2 3 8 2 4 2 2 8 4 4
Trigger _ _ _ 1 _ _ _ _ 1 1 1 _ _
Sequencer
Reactions
Break X X X X X X X X X X X X X
State Storage - - - X - - - - X X X - -
Trace
Internal - - - X - - - - X X X - -
E:I—{\X/I)e Counter _ _ _ _ _ _ _ _ _ _ 2 1 1
Clock Control
Global - - - X X X X X X X X X X
Modules - - - X - X - X X X X X X
™ Flash devices only
@ <=/>=is Compare for ==, <>, <=, and >=
® Standard comparison within all devices
8 Advanced Debugging Using the Enhanced Emulation Module (EEM) SLAA263D-September 2005—Revised April 2013

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA263D

13 TEXAS
INSTRUMENTS

www.ti.com C-Spy Internal Breakpoint Usage

10 C-Spy Internal Breakpoint Usage

C-SPY itself consumes breakpoints. C-SPY will set a breakpoint if:

» the debugger option Run to has been selected, and any step command is used.
These are temporary breakpoints which are only set when the debugger system is running. This
means that they are not visible in the Breakpoint Usage window.

» the linker options With 1/0 emulation modules has been selected.
These types of breakpoint consumers are displayed in the Breakpoint Usage dialog box as C-SPY
Terminal /O & libsupport module. The number of options used for this purpose depends on which
library you are using. Then CLIB is used, three breakpoints are used, on putchar, getchar and exit. The
user can disable these in the Breakpoint options dialog box. The DLIB is used, only one breakpoint is
required for terminal I/O etc and this breakpoint can not be disabled.

» C-SPY plugin modules, for example modules for real-time operating systems, can also consume
additional breakpoints. Specifically, by default, the Stack window consumes one breakpoint. This can
be disabled.

* some user breakpoints consume several low-level breakpoints and conversely, several user
breakpoints can share one low-level breakpoint. User breakpoints are displayed in the same way both
in the Breakpoint Usage dialog box and in the Breakpoints window, for example Data @[R]
callCount. Breakpoints are treated in the same way on all MSP430 devices.

11 References
1. MSP430 Product Brochure (SLAB034)

SLAA263D-September 2005—Revised April 2013 Advanced Debugging Using the Enhanced Emulation Module (EEM) 9

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SLAB034
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA263D

13 TEXAS
INSTRUMENTS

www.ti.com

Appendix A Examples

Al

A.2

The appendix contains some samples of the EEM features that are discussed in this application report.
The code provided with this report (www.ti.com/lit/zip/slaa263) does not necessarily present a good coding
style or have practical application for a specific part. The code has been designed for easy use of the
EEM features. Some features, particularly allowing of nested interrupts and a delay loop inside an
Interrupt Service Routine should never been used in a production application.

The menus and dialogs mentioned in the following sections can be accessed at these locations:
» Breakpoint
View | Breakpoint
» New Breakpoint
Right click in the Breakpoint window and select New Breakpoint.
» State Storage Configuration
Emulator | State Storage Control
e State Storage Window
Emulator | State Storage Window

Break on Write to Address

Create a Conditional Breakpoint (New Breakpoint | Conditional...)
Enter name of the variable in field Break At: wLoopCounter
Select Address bus, operator '=="and Write Access

Action should be Break

In the Condition Field set a Value of 50, Operator '=="and Write Access (do not change the mask
value)

« System stops if a value of 50 is written into the variable wLoopCounter

SR A

Break on Write to Register

Delete or disable previous Breakpoints

Create a Conditional Breakpoint (New Breakpoint | Conditional...)

Enter name of the register in field Break At: SP (for Stack Pointer)
Select Register, operator '<=" and Write Access

Action should be Break

Set Register value to 0x4350

No change is required in the Condition or Mask fields

e System halts if the stack pointer decreases to a value below 0x4350

No ook~

10

Advanced Debugging Using the Enhanced Emulation Module (EEM) SLAA263D-September 2005—Revised April 2013

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/zip/slaa263
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA263D

13 TEXAS
INSTRUMENTS

www.ti.com Break on Write to Flash

A.3 Break on Write to Flash

Delete or disable previous Breakpoints

Create a Range Breakpoint (New Breakpoint | Range...)
Enter Start Value: 0x4400 and End Value: OXFFFF

For write protection select:

e Type: Address

* Access: Write

e Action: Break

e Action when: Inside range

A wbdPR

NOTE: To test, reset the device via the GUI and execute GO. After a delay of approximately 5
seconds, the break occurs.

A.4 Break on Access of Invalid Memory

Delete or disable previous Breakpoints

Create a Range Breakpoint (New Breakpoint | Range...)
Enter Start Value: 0x1000 and End Value: 0x1800

For read protection select:

e Type: Address

* Access: Read/Write

e Action: Break

e Action when: Inside range

P wnN PR

NOTE: To test, reset the device via the GUI and execute GO. After a delay of approximately 10
seconds, the break will occur.

A.5 Break if Fetch is Out of Allowed Area

Delete or disable previous Breakpoints

Create a Range Breakpoint (New Breakpoint | Range...)
Enter Start Value: 0x4400 and Length: OXxFFFF

For read protection select:

e Type: Address

e Access: Fetch

e Action: Break

e Action when: Outside range

PwbdPR

NOTE: To test, reset the device via the GUI and execute GO. A break will occur in the Delay
function.

SLAA263D-September 2005—Revised April 2013 Advanced Debugging Using the Enhanced Emulation Module (EEM) 11

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA263D

13 TEXAS
INSTRUMENTS

State Storage: Trace www.ti.com

A.6 State Storage: Trace

1. Delete or disable previous Breakpoints
2. Create an Advanced Breakpoint (New Breakpoint | Advanced...)
3. Enter Break at: 0x4440
4. Actions should be Break and State Storage Trigger
5. Open State Storage Dialog via Emulator menu to configure the state storage function
6. Switch on via Enable state storage
7. Configure Trigger Action to Stop on Trigger
8. Configure how the State Storage function should Trigger to save events- Instruction Fetch
9. Run the code. The last eight instructions before the break are stored in the buffer
« Open State Storage Window via the Emulator Menu and examine the data after the CPU was
running and is stopped.
12 Advanced Debugging Using the Enhanced Emulation Module (EEM) SLAA263D-September 2005—Revised April 2013

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA263D

	Advanced Debugging Using the Enhanced Emulation Module (EEM)
	1 Introduction
	2 Triggers
	3 Breakpoint
	3.1 Address Breakpoints
	3.2 Data Breakpoints
	3.3 Register Breakpoints
	3.4 Mask Register
	3.5 Range Breakpoints

	4 State Storage
	4.1 Default Configuration

	5 Advanced Trigger Options
	5.1 Manually Combining Triggers
	5.2 Trigger on DMA Events

	6 Clock Control
	6.1 No Clock Control (e.g., 'F11x1,'F12x,'F13x/14x)
	6.2 Standard Clock Control (e.g., 'F41x)
	6.3 Extended Clock Control (e.g., 'F15x/16x,'F43x/44x)

	7 Cycle Counter
	8 Considerations
	9 Emulation Module Implementation Summary
	10 C-Spy Internal Breakpoint Usage
	11 References
	Appendix A Examples
	A.1 Break on Write to Address
	A.2 Break on Write to Register
	A.3 Break on Write to Flash
	A.4 Break on Access of Invalid Memory
	A.5 Break if Fetch is Out of Allowed Area
	A.6 State Storage: Trace

