
C2000™ C28x Optimization Guide
v1.2

Copyright © 2020, Texas Instruments Incorporated

Online HTML version available here

https://software-dl.ti.com/C2000/docs/optimization_guide/index.html

CONTENTS

1 Introduction 2
1.1 Software development flow . 2
1.2 Processing elements . 5

2 Initial Development 6
2.1 Application Binary Interface (ABI) . 6
2.2 Bitfield vs. driverlib . 7
2.3 Initial set of compiler options . 7
2.4 Code considerations . 9

3 Profiling 24
3.1 CCS Profile Clock . 24
3.2 CPUTimer . 24
3.3 CPUTimer with Function Entry/Exit Hooks . 26

4 Improving performance 29
4.1 Memory . 29
4.2 Optimization levels . 32
4.3 Inlining . 41
4.4 Pragmas . 43
4.5 Assertions . 45
4.6 Restrict . 47
4.7 Loop unrolling . 50
4.8 Leveraging DMAC instructions . 51

5 Common issues with optimizations 53
5.1 Shared Data . 53
5.2 Peripheral access . 54
5.3 Atomic access . 55
5.4 Calling asm functions from C code . 56
5.5 Uninitialized variables . 56
5.6 Interrupts . 57

i

6 Support 58

7 Changelog 59

8 IMPORTANT NOTICE AND DISCLAIMER 60

Index 61

ii

C2000™ C28x Optimization Guide, Release v1.2

This guide describes a systematic approach to improving the performance of applications executing
on the TMS320C28x CPU in C2000™ MCUs. The guide assumes the reader is familiar with
application development on C2000 MCUs. For training material on developing applications and
support information, refer to C2000 real-time control MCUs - Support & training. For an overview
of the key software packages associated with C2000 software development, refer to the C2000
Software Guide.

CONTENTS 1

http://www.ti.com/microcontrollers/c2000-real-time-control-mcus/overview.html
http://www.ti.com/microcontrollers/c2000-real-time-control-mcus/support-training.html
https://software-dl.ti.com/C2000/docs/software_guide/intro.html
https://software-dl.ti.com/C2000/docs/software_guide/intro.html

CHAPTER

ONE

INTRODUCTION

Note: The online HTML version of this guide is available at
https://software-dl.ti.com/C2000/docs/optimization_guide/index.html.

This chapter introduces a software development flow that can be used to improve the performance
of C code executing on the TMS320C28x CPU in C2000™ MCUs.

1.1 Software development flow

Software development for the C28x CPU can be split into the following phases:

Phase 1

Write, compile and debug the application on a C2000 device. During this phase, compiler opti-
mizations are disabled to provide the best debug experience. The focus of this phase is on func-
tionality and correctness. However, there are some rules to keep in mind at this stage to generate
efficient C2000 code and avoid later rework. Refer to Initial Development for details.

Phase 2

Profile the application to determine the regions of code where the application spends a majority of
its run time. In some cases, it may be clear that the application spends most of its time in one or
two ISRs. In this scenario, profiling can help determine which functions in the ISR account for a
majority of the ISR’s runtime.

Profiling is used to focus optimization efforts on the functions which account for a majority of the
runtime. There are different approaches to profiling, refer to section Profiling for details.

Phase 3

Optimize the application to meet performance and code size constraints. Typical steps include:

• Placing the most commonly executed functions and associated data in RAM

• Enabling the appropriate compiler options:

2

https://software-dl.ti.com/C2000/docs/optimization_guide/index.html
http://www.ti.com/microcontrollers/c2000-real-time-control-mcus/overview.html

C2000™ C28x Optimization Guide, Release v1.2

– Options to take advantage of optimization passes within the compiler - optimization
levels, inlining etc.

– Options to take advantage of hardware features (FPU, TMU, etc.)

• Where possible, use optimized libraries from TI (e.g. Digital Control Library)

• Provide more information to the compiler to help its optimizations (pragmas, restrict, etc.)

• Use the CLA

1.1. Software development flow 3

C2000™ C28x Optimization Guide, Release v1.2

Fig. 1.1: Software Development - Profiling and Optimization1.1. Software development flow 4

C2000™ C28x Optimization Guide, Release v1.2

For details. refer to Improving performance.

Phases 2 and 3 are iterative. Try an optimization, measure performance/code-size and repeat. It is
advisable to set up a self checking application so its correctness can be checked during optimiza-
tions.

1.2 Processing elements

C28x CPU The C28x CPU is a 32-bit fixed-point processor. It incorporates RISC features such as
single-cycle instruction execution and register-to-register operations. The modified Harvard
architecture of the CPU enables instruction and data fetches to be performed in parallel.

Floating-Point Unit

FPU The FPU extends the capabilities of the C28x fixed-point CPU by adding registers and in-
structions to support IEEE single-precision floating point operations.

FPU64 The FPU64 extends the capabilities of the C28x fixed-point CPU by adding registers and
instructions to support both IEEE single-precision and double-precision floating point oper-
ations.

Trigonometric Math Unit

TMU The TMU extends the capabilities of a C28x+FPU by adding instructions and leveraging
existing FPU instructions to speed up the execution of common trigonometric and arithmetic
operations.

Viterbi, Complex Math and CRC Unit

VCU The VCU processor extends the capabilities of the C28x CPU by adding registers and in-
structions to support the following algorithm types: Viterbi decoding, cyclic redundancy
check (CRC), complex math.

Further information about the C28x CPU, FPU, TMU and VCU can be found in the following
document(s):

• TMS320C28x CPU and Instruction Set Reference Guide

• TMS320C28x Extended Instruction Sets Technical Reference Manual

• Accelerators: Enhancing the Capabilities of the C2000 MCU Family Technical Brief

• TMS320C28x FPU Primer

Control Law Accelerator (CLA) The Control Law Accelerator is a 32-bit floating point math
accelerator that is common on most C2000 MCUs. It aids in the concurrent processing of fast
control algorithms. For details on the CLA, refer to the CLA chapter in the device TRM.

1.2. Processing elements 5

http://www.ti.com/lit/pdf/spru430
http://www.ti.com/lit/pdf/spruhs1
http://www.ti.com/lit/pdf/spry288
http://www.ti.com/lit/pdf/spraan9

CHAPTER

TWO

INITIAL DEVELOPMENT

This chapter outlines various factors to consider when starting development on C2000 MCUs.

2.1 Application Binary Interface (ABI)

Prior to release 18.12.0.LTS of TI’s C28x Compiler Tools, the one and only ABI for C28x was the
original COFF-based ABI.

C2000Ware Release 2.0 and 18.12.0.LTS of the TI Compiler Tools introduced a new ABI called
the C28x EABI. It is based on the ELF object file format. It is derived from industry standard
models, including the IA-64 C++ ABI and the System V ABI for ELF and Dynamic Linking.
The processor-specific aspects of the ABI, such as data layout and calling conventions, are largely
unchanged from the COFF ABI, although there are some differences. The COFF ABI and the
EABI are incompatible - all of the code linked into an application binary must follow the same
ABI.

TI’s supports both the new EABI and the older COFF ABI on F2837x and F28004x. Migration
to EABI for new software development on F2837x and F28004x is encouraged. Device support
software and libraries available in C2000Ware for F2838x and F28002x are EABI only.

Key distinctions between EABI and COFFABI:

• The double type is 64 bits. The size of double changes from 32 bits to 64 bits when you
migrate from COFF ABI to EABI.

• There is no leading underscore on symbols. COFF ABI adds a leading underscore to symbol
names, but EABI does not. Assembly file references to symbols need special handling.

Additional Resources

• A migration guide from COFF to EABI is available here.

• For more details on C28x EABI, refer to the C28x Embedded Application Binary Interface
application report.

6

https://software-dl.ti.com/ccs/esd/documents/C2000_c28x_migration_from_coff_to_eabi.html
http://www.ti.com/lit/sprac71a

C2000™ C28x Optimization Guide, Release v1.2

2.2 Bitfield vs. driverlib

Bitfield and driverlib are two approaches to implementing a hardware abstraction layer for C2000
MCUs. Refer to the application report, Programming TMS320x28xx and TMS320x28xxx Periph-
erals in C/C++ for a comparison of the approaches.

Note: All of the code examples in this chapter were built with C28x compiler version 18.12.2
LTS using the EABI application binary interface.

2.3 Initial set of compiler options

This section documents some of the commonly used compiler options. For details on using the
compiler, refer to TMS320C28x Optimizing C/C++ Compiler User’s Guide, Chapter 2, Using the
C/C++ Compiler.

2.3.1 ABI

The ABI is selected through the –abi option as follows:

• COFF ABI (--abi=coffabi). This is the default.

• EABI (--abi=eabi). Use this option to select the C28x Embedded Application Binary
Interface (EABI).

Refer to section Application Binary Interface (ABI) for details.

2.3.2 Enable FPU

On supported C28x CPUs, use the --float_support[=fpu32|fpu64] to enable 32-bit or
64-bit hardware floating-point support. FPU64 is supported only when using EABI.

Note: It is beneficial to enable the FPU even if the application does not use floating-point. This en-
ables the compiler to leverage instructions such as the Repeat Block (RPTB) to significantly
reduce branching overhead in certain loops.

2.2. Bitfield vs. driverlib 7

http://www.ti.com/lit/pdf/spraa85
http://www.ti.com/lit/pdf/spraa85
http://downloads.ti.com/docs/esd/SPRU514/

C2000™ C28x Optimization Guide, Release v1.2

2.3.3 Enable TMU

On supported C28x CPUs, use the ----tmu_support[=tmu0|tmu1] to enable support for
the Trigonometric Math Unit (TMU). Using this option automatically enables FPU support (as
with the --float_support=fpu32 option). When TMU support is enabled, intrinsics are
available to perform trigonometric instructions on the TMU. In relaxed floating point mode, RTS
library calls are replaced with the corresponding TMU hardware instructions for the following
floating point operations: floating point division, sqrt, sin, cos, atan, and atan2. Additionally, if the
--tmu_support=tmu1 option is used with -- fp_mode=relaxed, special versions of the
following 32-bit RTS math functions are used: exp2f(), espf(), log2f(), logf(), and powf().

2.3.4 Enable IDIV support

On supported C28x CPUs, use the --idiv_support=idiv0 to enable support for fast integer
division using hardware extensions to provide a set of instructions to accelerate integer division.
When this option is enabled, the built-in integer division and modulo operators (“/” and “%”) use
the appropriate faster instructions.

For details on enabling FPU, TMU and IDIV, refer to the TMS320C28x Optimizing C/C++ Com-
piler User’s Guide Section 2.3.4 Run-Time Model Options.

2.3.5 Unified memory model

Unified memory model means that any memory block can be used as either program memory or
data memory. All memory blocks including SARAM, flash, ROM, OTP and XINTF memory is
unified on the C28x MCUs. Peripheral registers are typically only mapped to data space.

If the applications memory map is configured as a single unified space, specifying unified
memory model in the build options (--unified_memory) is important because it allows the
compiler to generate efficient instructions for memcpy calls and structure assignments.

Even under unified memory, memory for some peripherals and some RAM associated with those
peripherals is allocated only in data memory. If --unified_memory is enabled, program mem-
ory address access to specific symbols such as peripheral registers can be prevented by declaring
those symbols as volatile.

Refer to Data allocation for instructions with two memory operands for an example of using
--unified_memory to enable the compiler to generate the MAC instruction.

2.3. Initial set of compiler options 8

http://downloads.ti.com/docs/esd/SPRU514/
http://downloads.ti.com/docs/esd/SPRU514/

C2000™ C28x Optimization Guide, Release v1.2

2.3.6 Enable debugging

During initial development, it is recommended to use the following options for debuggability:

• -g (--symdebug:dwarf)

• --opt_level=off

Setting --opt_level=off improves the debug experience. In general, the higher the level of
optimization that is applied, the harder it is to debug the program. This is because higher levels
of optimization enable more transformations and apply to broader granularities or scopes of the
program. Optimizations at levels 0 and 1 are applied to individual statements or blocks of code
within functions, level 2 enables optimizations across blocks of code within a function, level 3
enables optimizations across functions within a file, and level 4 enables optimizations across files.
Since transformations that occur at higher levels are usually more widespread, it is harder for the
debugger to map the resulting code to the original source program.

For details, refer to the TI E2E blog on Debugging and Optimization

2.4 Code considerations

2.4.1 Struct size

When declaring structs, keep overall size to less than 64 words.

In direct addressing mode, the 6-bit offset value is concatenated with the 16-bit DP register. The
offset value enables 0 to 63 words to be addressed relative to the current DP register value. Structs
larger that 64 words will require DP to the updated before accessing fields that are 64-words apart,
resulting in less efficient code due to the extra DP update instructions.

Table 2.1 compares 2 structs - Test1 is larger than 64 words and Test2 is smaller than 64 words.
Table 2.2 compares the generated assembly for functions with accesses to each struct. The larger
struct requires an extra MOVW instruction to set the DP before accessing field b.

2.4. Code considerations 9

https://e2e.ti.com/blogs_/archives/b/toolsinsider/archive/2016/04/15/from-the-experts-debugging-and-optimization

C2000™ C28x Optimization Guide, Release v1.2

Table 2.1: Structure size and efficiency of generated code
struct Test1 is larger than 64 words struct Test2 is smaller than 64 words

typedef struct
{

int a;
int array[63];
int b;

} Test1;

Test1 t1;

void test1()
{

t1.a = t1.b;
t1.b = 42;

}

typedef struct
{

int a;
int array[32];
int b;

} Test2;

Test2 t2;

void test2()
{

t2.a = t2.b;
t2.b = 42;

}

Table 2.2: Structure size and efficiency of generated code

||test1||:
MOVW DP,#||t1||+64
MOV AL,@||t1||+64
MOVW DP,#||t1||
MOV @||t1||,AL
MOVW DP,#||t1||+64
MOVB @||t1||+64,#42,

→˓UNC
LRETR

||test2||:
MOVW DP,#||t2||+33
MOV AL,@||t2||+33
MOV @||t2||,AL
MOVB @||t2||+33,#42,

→˓UNC
LRETR

2.4.2 Grouping global variables

Group global variables into structures can potentially enable the compiler to generate efficient
direct addressing using the DP and minimize the number of updates to the DP between variable
accesses.

Table 2.3 illustrates grouping global variables into fields in a struct.

2.4. Code considerations 10

C2000™ C28x Optimization Guide, Release v1.2

Table 2.3: Global variables - grouping and efficiency
Global variables Global variables grouped into a struct

int16_t global0;
int16_t global1;
int16_t global2;
int16_t global3;
int16_t global4;
int16_t global5[32];

int16_t foo()
{

return global0 + global1 +
→˓global2 +

global3 + global4 +
→˓global5[0];
}

typedef struct {
int16_t global0;
int16_t global1;
int16_t global2;
int16_t global3;
int16_t global4;
int16_t global5[32];

} Globals;

Globals g;

int16_t bar()
{

return g.global0 + g.global1
→˓+ g.global2 +

g.global3 + g.global4
→˓+ g.global5[0];
}

Table 2.4 illustrates the improvement in the generated assembly from grouping global variables -
there are fewer updates to the DP between accesses - 3 vs. 1 for the 5 accesses.

Table 2.4: Efficiency improvements from grouping global
variables into a struct

||foo||:
MOVW DP,#||global0||
MOV AL,@||global0||
MOVW DP,#||global5||
ADD AL,@||global5||
MOVW DP,#||global1||
ADD AL,@||global1||
ADD AL,@||global2||
ADD AL,@||global3||
ADD AL,@||global4||
LRETR

||bar||:
MOVW DP,#||g||+1
MOV AL,@||g||+1
ADD AL,@||g||
ADD AL,@||g||+2
ADD AL,@||g||+3
ADD AL,@||g||+4
ADD AL,@||g||+5
LRETR

Refer to TMS320C28x Optimizing C/C++ Compiler User’s Guide, Section 3.11, Data Page (DP)
Pointer Load Optimization for details.

2.4. Code considerations 11

http://downloads.ti.com/docs/esd/SPRU514/

C2000™ C28x Optimization Guide, Release v1.2

2.4.3 Local variables

Local variables in a function are placed on the stack. The compiler uses the SP register to access
these local variables. The stack frame for a function consists of local variables and other compiler
generated data. For frames that exceed 63 words in size (the maximum reach of the SP offset
addressing mode), the compiler uses XAR2 as a frame pointer (FP).

To take advantage of SP-relative addressing, keep the local frame less than 64 words. Table 2.5
illustrates the impact of stack frame size on the efficiency of generated code. The only difference
between the two code snippets is that in the example on the left, the stack frame is larger than 64
words. In this example, volatile is used to ensure the compiler reads the local variables a and
b from memory vs. allocating them to registers

Table 2.5: Stack frame size and efficiency of generated code
Stack frame >= 64 words Stack frame < 64 words

int16_t local_variables1()
{

volatile int16_t a;
int16_t array[64];
volatile int16_t b;

a = 42;
b = 44;
update(array, 64);

return a + b;
}

int16_t local_variables2()
{

volatile int16_t a;
int16_t array[32];
volatile int16_t b;

a = 42;
b = 44;
update(array, 32);

return a + b;
}

Table 2.6 illustrated how the compiler is able to use the more efficient SP-relative addressing when
the frame size is < 64 words.

2.4. Code considerations 12

C2000™ C28x Optimization Guide, Release v1.2

Table 2.6: Structure size and efficiency of generated code
Frame size >= 64 requires use of FP (AR2) Frame size < 64 uses SP relative address-

ing

||local_variables1||:
MOVL *SP++,XAR1
MOVL *SP++,XAR2
MOVZ AR2,SP
SUBB FP,#6
ADDB SP,#66
MOVZ AR4,SP
MOVB *+FP[7],

→˓#42,UNC
MOVB AL,#64
SUBB XAR4,#64
MOVB *+FP[6],

→˓#44,UNC
MOVZ AR4,AR4
LCR #||update||

MOV AL,*+FP[6]
ADD AL,*+FP[7]
SUBB SP,#66
MOVL XAR2,*--SP
MOVL XAR1,*--SP
LRETR

||local_variables2||:
ADDB SP,#34
MOVZ AR4,SP
MOVB *-SP[33],#42,

→˓UNC
MOVB AL,#32
SUBB XAR4,#32
MOVB *-SP[34],#44,

→˓UNC
MOVZ AR4,AR4
LCR #||update||

MOV AL,*-SP[34]
ADD AL,*-SP[33]
SUBB SP,#34
LRETR

2.4.4 Saturation in C

To perform efficient saturation in C on the C28x, use the ternary ?: operator.

Using if results in the following code with -O3:

2.4. Code considerations 13

C2000™ C28x Optimization Guide, Release v1.2

Table 2.7: Saturation with if - inefficient
C Source Generated Assembly

int saturate(int sum, int max,
→˓int min)
{

if(sum > max)
sum = max;

if(sum < min)
sum = min;

return sum;
}

||saturate||:
MOVZ AR6,AL
MOV AL,AR4
CMP AH,AR6
MOV AR6,AH,LT
CMP AL,AR6
MOV AR6,AL,GT
MOV AL,AR6
LRETR

Using ?: generates the much more efficient MAX/MIN instructions:

Table 2.8: Saturation with ?: - efficient
C Source Generated Assembly

int saturate_opt(int sum, int
→˓max, int min)
{

sum = (sum > max) ? max :
→˓sum;

sum = (sum < min) ? min :
→˓sum;

return sum;
}

||saturate_opt||:
MIN AL,AH
MAX AL,AR4
LRETR

2.4.5 Float vs. double

On C2000 devices without FPU64 hardware support, there is significant overhead when applica-
tion compiled for EABI performs operations on double types.

In EABI, the double type is mapped to 64-bit double-precision floating point. Refer to Applica-
tion Binary Interface (ABI) for details. An application compiled for EABI (--abi=eabi) can
introduce double precision floating point operations in the following ways:

1. Explicit use of the double type. Avoid using the double type unless the additional accu-
racy/range is required by the application.

2.4. Code considerations 14

C2000™ C28x Optimization Guide, Release v1.2

2. Implicitly via floating point constants. Use the f suffix when the constant can be treated as
a single precision floating point constant.

Floating point constants without the f suffix are treated as double-precision by the compiler.
This behavior is mandated by the C standard. This can lead to unexpected introduction
of double precision operations in the application. Table 2.10 illustrates this inefficiency -
the constant is treated as double precision, leading to conversion of x from float to double
precision. The multiply is a double precision operation and the result is converted back to
single precision.

Table 2.9: Single and double-precision floating point con-
stants

Constant (treated as double) Constant with f suffix (treated as
float)

float foo1(float x)
{

return x * 42.2;
}

float foo2(float x)
{

return x * 42.2f;
}

2.4. Code considerations 15

C2000™ C28x Optimization Guide, Release v1.2

Table 2.10: Comparison of generated assembly
Operations performed in double
precision

Operations performed in single
precision

||foo1||:
ADDB SP,#8
MOVZ AR4,SP
SUBB XAR4,#8
MOVZ AR6,AR4
LCR #||__

→˓c28xabi_ftod||
; call occurs [#||_

→˓_c28xabi_ftod||]
MOVZ AR4,SP
MOVZ AR6,SP
MOVL XAR5,#$C

→˓$FL1
SUBB XAR4,#8
SUBB XAR6,#4
MOVZ AR4,AR4
MOVZ AR6,AR6
LCR #||__

→˓c28xabi_mpyd||
; call occurs [#||_

→˓_c28xabi_mpyd||]
MOVZ AR4,SP
SUBB XAR4,#4
MOVZ AR4,AR4
LCR #||__

→˓c28xabi_dtof||
; call occurs [#||_

→˓_c28xabi_dtof||]
SUBB SP,#8
LRETR
; return occurs

||foo2||:
MOVIZ R1H,

→˓#16936
MOVXI R1H,

→˓#52429
MPYF32 R0H,R1H,

→˓R0H
LRETR
; return occurs

3. Math routines such as sqrt from the C Standard Library. In COFF, since float and
double are both 32-bit single precision, there is no distinction between sqrt and sqrtf.
However, with EABI, sqrtf operates on a float argument, sqrt operates on double.

Detecting double precision operations

The compiler option --float_operations_allowed=32 can be used to detect if an appli-
cation is inadvertently using double precision operations.

This option restricts the type of floating point operations allowed in the application. The default

2.4. Code considerations 16

C2000™ C28x Optimization Guide, Release v1.2

is all. If set to none, 32, or 64, the application is checked for operations that will be performed at
runtime. For example, if --float_operations_allowed=32 is specified on the command
line, the compiler issues an error if the application contains double precision operations. For
details, refer to TMS320C28x Optimizing C/C++ Compiler User’s Guide.

2.4.6 Intrinsics

The C28x compiler provides intrinsics, special functions that map directly to inlined
C28x/FPU/FPU64/TMU instructions. Intrinsics are used to express operations that cannot be
easily expressed in C/C++ code. Intrinsics are used like functions - C/C++ variables can be used
with intrinsics. Intrinsics are specified with a leading double underscore.

An example is the __flip, __flip32 and __flip64 set of intrinsics to reverse the order of
bits in the source. The compiler maps all 3 intrinsics to an appropriate sequence of C28x FLIP
instructions.

int32_t x;
int32_t y;

...
x = __flip32(y);

For details on the set of intrinsics available in the C28x compiler and their description, refer to
TMS320C28x Optimizing C/C++ Compiler User’s Guide, Section 7.6, Using Intrinsics to Access
Assembly Language Statements.

2.4.7 Data allocation for instructions with two memory operands

Many instructions on the C2000 ALU take memory operands, meaning they can operate directly
on data in memory without having to load to and store back from registers.

For instructions taking 2 memory operands, the second memory operand (*XAR7) uses the pro-
gram memory bus. The C2000 RAM blocks only support one access to a memory block in a single
pipeline cycle. To avoid a pipeline stalls, data arrays should be allocated to different physical
RAM blocks. The physical RAM blocks can be found in the memory map of the device in its data
manual.

The following instructions use the program memory bus for a second memory access via *XAR7:

• MAC

• IMACL

• QMACL

• DMAC

2.4. Code considerations 17

http://downloads.ti.com/docs/esd/SPRU514/
http://downloads.ti.com/docs/esd/SPRU514/

C2000™ C28x Optimization Guide, Release v1.2

• MACF32 (FPU only)

• PREAD

Table 2.11 shows the C source for multiplying 2 arrays and accumulating the result. With -O3
--unified_memory, the compiler generates a RPT in parallel with a MAC instruction for the
loop. The MAC instruction has 2 memory operands, corresponding to array_1 and array_2.

Table 2.11: MAC instruction with 2 memory operands
C Source Generated Assembly

int32_t mac(int16_t* array1,
→˓int16_t* array2, int16_t M)
{

_nassert(M > 0);

int j;
int32_t sum = 0;
for (j=0; j < M; j++)

sum += array1[j] *
→˓array2[j];

return sum;
}

||mac||:
MOVL XAR7,XAR5
ADDB AL,#-1
MOVZ AR5,AL
MOV P,#0
MOVB ACC,#0
RPT AR5

|| MAC P,*XAR4++,
→˓*XAR7++

ADDL ACC,P
LRETR

Table 2.4.7 compares performance on F28004x when the arrays are placed in same and dif-
ferent memory blocks. Both scenarios use the same compiler options: -v28 --abi=eabi
--unified_memory --ramfunc=on -O3 --opt_for_speed=5. Listing 2.1 illus-
trates how to place the 2 arrays in different physical memory blocks.

Scenario Cycles
Linker cmd file places both arrays in same memory block 141
Linker cmd file places both arrays in different memory blocks 77

2.4. Code considerations 18

C2000™ C28x Optimization Guide, Release v1.2

Listing 2.1: Linker command file

1 SECTIONS
2 {
3 .array_a : > RAMGS2
4 .array_b : > RAMGS3
5 }

2.4.8 Use of volatile

Shared Data

• Any global variable that is read/written by main() and one or more ISRs must be annotated
volatile

• Volatile indicates to the compiler that the variable might be modified by something external
to the obvious flow of the program such as an ISR

• This ensures the compiler preserves the number of volatile reads and writes to the global
variable exactly as written in C/C++ code. The compiler will not:

– Eliminate redundant reads or writes

– Re-order accesses

Table 2.12 illustrates the need for volatile when optimizations are enabled. Without the volatile
qualifier on flag, the compiler will remove the if block in main() because its analysis indicates
that flag is always 0 and the if condition is always false. volatile indicates to the compiler
that something outside of main(), in this case the ISR, can update flag.

2.4. Code considerations 19

C2000™ C28x Optimization Guide, Release v1.2

Table 2.12: Use of volatile
Main application Interrupt Service Routine

volatile int flag;
int x;

int main()
{

flag = 0;
...

if (flag == 1)
x++;

...
}

extern int flag;
interrupt void ISR(void)
{

...
flag = 1;
...

}

Peripheral access

• The volatile keyword must be used when accessing memory locations that represent memory
mapped peripherals.

• Such memory locations might change value in ways that the compiler cannot predict.

• This ensures the compiler preserves reads and writes to memory exactly as written in the C
code.

• A missing volatile qualifier can result in the compiler incorrectly optimizing away or re-
ordering reads/writes.

Listing 2.2: Using volatile for peripheral register access

1 static inline void
2 GPIO_writePin(uint32_t pin, uint32_t outVal)
3 {
4 volatile uint32_t *gpioDataReg;
5 uint32_t pinMask;
6

7 //
8 // Check the arguments.
9 //

10 ASSERT(GPIO_isPinValid(pin));
11

12 gpioDataReg = (uint32_t *)GPIODATA_BASE +
13 ((pin / 32U) * GPIO_DATA_REGS_STEP);

(continues on next page)

2.4. Code considerations 20

C2000™ C28x Optimization Guide, Release v1.2

(continued from previous page)

14

15 pinMask = (uint32_t)1U << (pin % 32U);
16

17 if(outVal == 0U)
18 {
19 gpioDataReg[GPIO_GPxCLEAR_INDEX] = pinMask;
20 }
21 else
22 {
23 gpioDataReg[GPIO_GPxSET_INDEX] = pinMask;
24 }
25 }

2.4.9 Other considerations

Atomic access

• 16-bit reads/writes are atomic.

• 32-bit float reads/writes are atomic except: writing a 32-bit float constant is only atomic if
performed with a single opcode.

• 32-bit integer reads/writes:

• 32-bit reads/writes that use a single opcode are atomic.

• Atomic accesses within an ISR: By default, accesses within an ISR are atomic. The INTM
bit is automatically set (disable interrupts) by the hardware during the context switch. The
exception would be if the application re-enables interrupts within the ISR in order to nest
interrupts.

• If possible, group atomic accesses together or create a function to perform the sequence
disable-interrupts/atomic-accesses/enable-interrupts.

• For writes to global variables larger than 32 bits (64 bit long double, structures) disable/re-
enable interrupts around the write. This ensures the writer updates the entire variable before
the reader accesses it and avoids leaving the variable in an inconsistent or incomplete state.

For other atomic operations, there are two recommended approaches:

• Use an atomic compiler intrinsic if one is available. These are documented in the compiler
user’s guide (www.ti.com/lit/SPRU514). The description will say “in an atomic way”.

• Disable / enable interrupts around atomic operations using below intrinsics:
__disable_interrupts(); __enable_interrupts();

2.4. Code considerations 21

C2000™ C28x Optimization Guide, Release v1.2

Listing 2.3 is a code snippet from the Digital Control Library in C2000Ware illustrating disabling
interrupts around updates to a struct to ensure atomic updates to the entire structure. Refer to the
TMS320C28x Optimizing C/C++ Compiler User’s Guide, Table 7-6, TMS320C28x C/C++ Com-
piler Intrinsics for details on the __enable_interrupt() and __disable_interrupt()
intrinsics.

Listing 2.3: Disable interrupts to ensure atomic struct update

1 uint16_t val = __disable_interrupts();
2

3 p->Kp = p->sps->Kp;
4 p->Ki = p->sps->Ki;
5 p->Kd = p->sps->Kd;
6 p->Kr = p->sps->Kr;
7 p->c1 = p->sps->c1;
8 p->c2 = p->sps->c2;
9 p->Umax = p->sps->Umax;

10 p->Umin = p->sps->Umin;
11 DCL_restoreInts(v);
12

13 // If interrupts were originally enabled, re-enable them
14 if (0U == (val & 0x1))
15 __enable_interrupts();

Calling asm functions from C code

Any ASM functions called from C code must follow the C calling and register conventions. Re-
fer to the TMS320C28x Optimizing C/C++ Compiler User’s Guide, Sections 7.2 Register Con-
ventions, 7.3 Function Structure and Calling Conventions and 7.5 Interfacing C and C++ With
Assembly Language.

Any violation of these conventions can result in application passing with -Ooff, but failing at higher
optimization levels.

Uninitialized variables

• Using variables without initialization can lead to undefined behavior

• The behavior of an application with uninitialized variables can change with optimization
levels, making debug difficult

• Local variables

– Must be explicitly initialized in the application before any use

• Global variables

2.4. Code considerations 22

http://downloads.ti.com/docs/esd/SPRU514/
http://downloads.ti.com/docs/esd/SPRU514/

C2000™ C28x Optimization Guide, Release v1.2

– C standard specifies that global (extern) and static variables without explicit initializa-
tions must be initialized to 0 before the program begins running

– C runtime initialization behavior differs across COFF and EABI

– Refer to the TMS320C28x Optimizing C/C++ Compiler User’s Guide for details - Sec-
tions 7.10.3 Automatic Initialization of Variables for COFF and 7.10.4 Automatic Ini-
tialization of Variables for EABI.

Interrupts

• RPT instructions are not interruptible, and can potentially delay or block interrupts from
executing * For example, if there is a memcpy() instruction in a background function, and
the compiler generates RPT instructions for this function, that section of code will be un-
interruptible * If the compiler generates RPT instructions within an ISR, interrupts will be
blocked, even if interrupt nesting is enabled * To avoid this issue, there are two compiler
options available - –no_rpt which will tell the compiler not to generate RPT instructions, or
–rpt_threshold which will limit the number of consecutive RPT instructions generated

2.4. Code considerations 23

http://downloads.ti.com/docs/esd/SPRU514/

CHAPTER

THREE

PROFILING

Profiling is used to focus optimization efforts on functions that account for a majority of the run-
time.

There are different approaches to profiling:

• Code Composer Studio™ (CCS) Profile clock feature

• CPUTimer

• CPUTimer and Function entry/exit hooks

• Toggle GPIO pin

3.1 CCS Profile Clock

The Code Composer Studio Profile Clock feature can be used to count the number of cycles from
one breakpoint to the next. This is a quick way to determine the cycles taken by an arbitrary region
of code.

3.2 CPUTimer

Using the CPUTimer is a programmatic approach to determining the number of cycles between
any two points in the code. For example, Listing 3.3 illustrates how to determine the number of
cycles taken by the loop using the CPUTimer.

Listing 3.1: CPUTimer header file (cycle_counter.h)

1 #ifndef _CYCLE_COUNTER_H_
2 #define _CYCLE_COUNTER_H_
3

4 #include <stdint.h>
5

(continues on next page)

24

https://www.ti.com/tool/CCSTUDIO
https://software-dl.ti.com/ccs/esd/documents/ccs_counting_cycles.html#profile-clock

C2000™ C28x Optimization Guide, Release v1.2

(continued from previous page)

6 void CycleCounter_Init(void);
7 uint32_t CycleCounter_Read(void);
8 void CycleCounter_Stop(void);
9

10 #endif

Listing 3.2: CPUTimer source file (cycle_counter.c)

1 #include "common/inc/cycle_counter.h"
2 #include "driverlib/cputimer.h"
3

4 #define CPUTIMER_MAX_PERIOD (0xFFFFFFFFUL)
5

6 void CycleCounter_Init(void)
7 {
8 CPUTimer_clearOverflowFlag(CPUTIMER1_BASE);
9

10 CPUTimer_setPeriod(CPUTIMER1_BASE, CPUTIMER_MAX_PERIOD);
11

12 CPUTimer_setPreScaler(CPUTIMER1_BASE, 0UL);
13

14 CPUTimer_reloadTimerCounter(CPUTIMER1_BASE);
15

16 CPUTimer_stopTimer(CPUTIMER1_BASE);
17

18 CPUTimer_startTimer(CPUTIMER1_BASE);
19 }
20

21 void CycleCounter_Stop(void)
22 {
23 CPUTimer_stopTimer(CPUTIMER1_BASE);
24 }
25

26 // With higher levels of optimization, it’s possible that the compiler
→˓moves

27 // application code before the first call to CycleCounter_Read() or
→˓after the

28 // second call to CycleCounter_Read(). This can result in the reported
→˓cycle

29 // count being lower than the actual cycle count.
30 // Disabling inlining of CycleCounter_Read prevents this from

→˓occurring.
31 #pragma FUNC_CANNOT_INLINE(CycleCounter_Read)
32 uint32_t CycleCounter_Read(void)
33 {

(continues on next page)

3.2. CPUTimer 25

C2000™ C28x Optimization Guide, Release v1.2

(continued from previous page)

34 return CPUTIMER_MAX_PERIOD - CPUTimer_getTimerCount(CPUTIMER1_
→˓BASE);

35 }

Note:

• For simplicity, this implementation does not consider overflow.

• For details on the DriverLib CPU Timer functions, refer to the DriverLib
User’s Guide for the device. E.g. the User’s Guide for F28004x is avail-
able at <C2000Ware install dir>/device_support/f28004x/docs/
F28004x_DriverLib_Users_Guide.pdf

Listing 3.3: CPUTimer Example

1 CycleCounter_Init();
2

3 uint32_t start = CycleCounter_Read();
4 uint32_t overhead = CycleCounter_Read() - start;
5

6 start = CycleCounter_Read();
7

8 int i;
9 for (i=0; i < 100; i++)

10 asm("\tNOP;");
11

12 uint32_t time = CycleCounter_Read() - start - overhead;
13

14 printf("Cycles: %ld\n", time);

3.3 CPUTimer with Function Entry/Exit Hooks

The CPUTimer can be combined with the Function Entry/Exit Hooks feature available in the com-
piler to generate a quick profiler.

When the Entry/Exit hooks feature is enabled using the --entry_hook and --exit_hook
options, the compiler inserts a call to an entry hook on entry to each function in the program. The
compiler also inserts a call to a exit hook on exit of each function. Refer to the TMS320C28x
Optimizing C/C++ Compiler User’s Guide for details - Section 2.14, Enabling Entry Hook and
Exit Hook Functions.

Listing 3.4 illustrates using the entry and exit hooks along with the CPUTimer to implement a
simple profiler.

3.3. CPUTimer with Function Entry/Exit Hooks 26

http://downloads.ti.com/docs/esd/SPRU514/
http://downloads.ti.com/docs/esd/SPRU514/

C2000™ C28x Optimization Guide, Release v1.2

Listing 3.4: Using extry and exit hooks to implement a pro-
filer

1 #include "common/inc/cycle_counter.h"
2 #include "common/inc/profiling_hooks.h"
3 #include <stdio.h>
4

5 #define MAX_ENTRIES (64)
6

7 // Indicate if the timestamp is associated with function entry or exit
8 typedef enum { PD_ENTRY=0, PD_EXIT } PD_Mode;
9

10 // Struct for data associated with a single timestamp
11 typedef struct {
12 uint32_t function_address;
13 uint32_t timestamp;
14 PD_Mode mode;
15 } ProfileData;
16

17 // Array to store profile data
18 ProfileData table[MAX_ENTRIES];
19 int index = 0;
20

21 // Entry hook function used to record cycle count on entry into
→˓function

22 void __entry_hook(void (*addr)())
23 {
24 if (index >= MAX_ENTRIES) return;
25

26 table[index].function_address = (uint32_t)addr;
27 table[index].mode = PD_ENTRY;
28 table[index].timestamp = CycleCounter_Read();
29 index++;
30 }
31

32 // Exit hook function used to record cycle count on exit from function
33 void __exit_hook(void (*addr)())
34 {
35 if (index >= MAX_ENTRIES) return;
36

37 table[index].timestamp = CycleCounter_Read();
38 table[index].function_address = (uint32_t)addr;
39 table[index].mode = PD_EXIT;
40 index++;
41 }

Files with functions that need to be profiled are compiled using the --entry_hook

3.3. CPUTimer with Function Entry/Exit Hooks 27

C2000™ C28x Optimization Guide, Release v1.2

--entry_parm=address --exit_hook --exit_parm=address options.

When an application is built with the entry/exit hooks in Listing 3.4, the table is populated with
profile data. For example, the code snippet in Listing 3.5 results in the following table:

Listing 3.5: Example using the hook functions for profiling

1 int main()
2 {
3 ProfileData_init();
4

5 foo();
6

7 ProfileData_print();
8

9 return 0;
10 }
11

12 void foo()
13 {
14 int i;
15 for (i=0; i < 100; i++)
16 asm("\tNOP;");
17

18 bar();
19 bar();
20 }
21

22 void bar()
23 {
24 int i;
25 for (i=0; i < 100; i++)
26 asm("\tNOP;");
27 }

0x00a647, 0, 25
0x00a637, 0, 562
0x00a637, 1, 1090
0x00a637, 0, 1134
0x00a637, 1, 1662
0x00a647, 1, 1697

3.3. CPUTimer with Function Entry/Exit Hooks 28

CHAPTER

FOUR

IMPROVING PERFORMANCE

This chapter describes various techniques to improve the performance of C code on the C28x
CPU. One or more of the techniques described below or a combination of techniques can be used
to improve performance. Techniques that are beneficial will depend on the nature of the application
and can vary from application to application. For example:

• Executing from RAM illustrates improving performance by placing frequently executed func-
tions in RAM.

• Optimization levels provides an overview of compiler optimization levels.

• Inlining can improve performance in an application with multiple levels of function calls.

• Compiler annotations such as Pragmas, Assertions and Restrict provide additional informa-
tion to the compiler to help improve the performance of generated code.

• Loop unrolling is a technique to improve the performance of small loops.

• Leveraging DMAC instructions describes how to leverage the Dual Multiply Accumulate
(DMAC) instructions from C source.

4.1 Memory

4.1.1 Executing from flash

The TMS320F28xxx family is designed for stand alone operation in embedded controller appli-
cations. The on-chip flash usually eliminates the need for external non-volatile memory and a
host processor from which to boot-load. For details on running applications from internal flash
memory, refer to the application note Running an Application from Internal Flash Memory on the
TMS320F28xxx DSP.

Executing code from RAM is faster than executing it from flash. However, C2000 MCUs support
code-prefetch and data caching while executing from flash to minimize overhead. For details on
these features, refer to the “Flash and OTP Memory” section in the device Technical Reference
Manual (TRM).

29

http://www.ti.com/lit/pdf/spra958/
http://www.ti.com/lit/pdf/spra958/

C2000™ C28x Optimization Guide, Release v1.2

Note: Both code-prefetch and data caching are disabled at power-up. Application software
must enable code-prefetch and configure the wait states appropriately. It also needs to en-
able the data cache. Refer to the InitFlash() function in C2000Ware for details. For ex-
ample, InitFlash() for F28004x is defined in <C2000Ware install directory>/
device_support/f28004x/common/source/f28004x_sysctrl.c.

Table 4.1 lists cycle counts for executing the loop in Listing 4.1 on flash and RAM. Compiler
options used: -O3 --opt_for_speed=5 --abi=eabi. The --ramfunc=on option and
corresponding linker command file was used to execute code from RAM.

Table 4.1: Comparing code execution cycles for flash vs.
RAM

Description Cycles on F28004x
flash without enabling code-prefetch 72006
flash with code-prefetch enabled 59996
RAM 54002
Cycles to execute the loop (calculated) 54000

Listing 4.1: Loop used to compare flash vs. RAM code exe-
cution

1 int i;
2 // RPT+4 NOPs BANZ iterations
3 // Total cycles = (5 * 10 + 4) * 1000 = 54000

→˓cycles
4 for (i=0; i < 1000; i++)
5 {
6 asm(" RPT #3 || NOP;"); // 5 cycles - RPT + 4 NOPs
7 asm(" RPT #3 || NOP;");
8 asm(" RPT #3 || NOP;");
9 asm(" RPT #3 || NOP;");

10 asm(" RPT #3 || NOP;");
11 asm(" RPT #3 || NOP;");
12 asm(" RPT #3 || NOP;");
13 asm(" RPT #3 || NOP;");
14 asm(" RPT #3 || NOP;");
15 asm(" RPT #3 || NOP;");
16 }

4.1. Memory 30

C2000™ C28x Optimization Guide, Release v1.2

4.1.2 Executing from RAM

Code

As seen from the data in Table 4.1, it is beneficial to copy time critical code from its load address
in flash to RAM for execution.

The ramfunc attribute is a TI compiler feature which allows code to easily specify that a function
will be placed in and executed out of RAM. The attribute is applied to a function with GCC attribute
syntax, as follows:

__attribute__((ramfunc))
void f(void) { ... }

The --ramfunc=on option is equivalent to specifying the attribute on all functions in source
files compiled with the option, with no source modification required.

Note: Fast branch instructions (SBF/BF) are generated for RAM functions. These instructions
take advantage of dual prefetch queue on the C28x core that reduces the cycles for a taken branch
from 7 to 4.

The ramfunc attribute and option is available C2000 compiler versions 15.6 and above. For
older compilers that do not support this feature, the CODE_SECTION pragma may be used in
combination with linker command file modifications.

#pragma CODE_SECTION(f, ".TI.ramfunc")
void f(void) { ... }

The linker command file is set up to create symbols corresponding to the load and run addresses
for the .TI.ramfunc section.

Listing 4.2: Linker command snippet for .TI.ramfunc

.TI.ramfunc : LOAD = FLASH_BANK0_SEC1,
RUN = RAMLS0to7,
LOAD_START(RamfuncsLoadStart),
LOAD_SIZE(RamfuncsLoadSize),
LOAD_END(RamfuncsLoadEnd),
RUN_START(RamfuncsRunStart),
RUN_SIZE(RamfuncsRunSize),
RUN_END(RamfuncsRunEnd),
ALIGN(4)

Code in the application uses a memcpy to copy the .TI.ramfunc section from link address in
flash to run address in RAM.

4.1. Memory 31

C2000™ C28x Optimization Guide, Release v1.2

Listing 4.3: Copy .TI.ramfunc from flash to RAM

memcpy(&RamfuncsRunStart, &RamfuncsLoadStart, (size_t)&
→˓RamfuncsLoadSize);

Data

Constant arrays - if access to a constant array is time critical, then consider copying the array
from its load address in flash to a RAM address to reduce access time.

4.1.3 Other considerations

• If code accesses data within the same physical memory, then performance will degrade due
to resource conflicts. Place code and the data it accesses in separate blocks to improve
performance.

• Wait states will degrade performance. Most SARAM is zero-wait on 28x MCUs. Always
check the data manual to find the wait states for each physical block and whether it applies
to program or data accesses.

• If code makes extensive use of two data buffers, putting each buffer in a different RAM block
may improve performance. The goal is to reduce the pipeline stalls due to write and read
occurring in the same cycle to different buffers. Refer to Data allocation for instructions
with two memory operands for an example.

4.2 Optimization levels

The compiler can perform many optimizations to improve the execution speed and reduce the size
of C and C++ programs. Table 4.2 lists the optimization levels available, the scope of each level
and some examples of optimizations performed at each level.

4.2. Optimization levels 32

C2000™ C28x Optimization Guide, Release v1.2

Table 4.2: Optimization levels
Optimization
level

Scope Optimizations performed

--opt_level=off,
-Ooff

None None. This is the default setting for the C28x
compiler.

--opt_level=0,
-O0

Statement
• Allocates variables to registers
• Performs loop rotation
• Simplifies expressions, statements
• Eliminates unused assignments
• Dead code elimination
• Expands calls to functions declared in-

line
• Simplifies control code (if-else)

--opt_level=1,
-O1

Block
• Performs all –opt_level=0 (-O0) opti-

mizations, plus:
• Performs local constant propagation

and folding, copy propagation
• Eliminates local common subexpres-

sions

--opt_level=2,
-O2

Function
• Performs all –opt_level=1 (-O1) opti-

mizations, plus:
• Loop optimizations, Loop unrolling
• Eliminates global common subexpres-

sions
• Eliminates global unused assignments
• Generates auto incremented addresses

--opt_level=3,
-O3

File (i.e. across functions
in a file) • Performs all –opt_level=2 (-O2) opti-

mizations, plus:
• Inlining of small functions
• Removes functions not called in the file

--opt_level=4,
-O4

Program Link time optimizations. Refer to
TMS320C28x Optimizing C/C++ Com-
piler User’s Guide, Section 3.6, Link-Time
Optimization (–opt_level=4 Option).

Note: To generate efficient code, it is highly recommended to set the optimization level at -O2 or

4.2. Optimization levels 33

http://downloads.ti.com/docs/esd/SPRU514/
http://downloads.ti.com/docs/esd/SPRU514/

C2000™ C28x Optimization Guide, Release v1.2

higher.

For descriptions of these optimizations, refer to TMS320C28x Optimizing C/C++ Compiler User’s
Guide, Section 3.16, What Kind of Optimization Is Being Performed?

4.2.1 Examples

Expression simplification

Listing 4.4: Example to illustrate expression simplification

int32_t test(int32_t a, int32_t b, int32_t c, int32_t d)
{

int32_t tmp;

if (d > 0)
tmp = (a * b) + (a * c);

else
tmp = (a * b);

return tmp;
}

There are 3 32-bit multiplies in the source code in Listing 4.4, which require the IMPYL instruction.
At -O2, the compiler is able to simplify the expressions to generate 1 IMPYL instructions vs. 3
without optimizations.

Optimization level Number of IMPYL in generated assembly
-Ooff 3
-O0, -O1 2
-O2 1

Constant propagation and folding

Listing 4.5: Example to illustrate constant propagation and
folding

1 int32_t constant(int32_t c, int32_t d)
2 {
3 int32_t a = 42;
4 int32_t b = 10;
5 int32_t tmp;

(continues on next page)

4.2. Optimization levels 34

http://downloads.ti.com/docs/esd/SPRU514/
http://downloads.ti.com/docs/esd/SPRU514/

C2000™ C28x Optimization Guide, Release v1.2

(continued from previous page)

6

7 if (d > 0)
8 tmp = (a * b) + (a * c);
9 else

10 tmp = (a * b);
11

12 return tmp;
13 }

This optimization propagates the values of constants into expressions and precomputes the results
of constant expressions.

At -O2 and higher, the compiler replaces the expression with:

(d > 0L) ? (tmp = (c+10L)*42L) : (tmp = 420L);

I.e. it propagates the values of a and b into the expressions on lines 8, 10 and computes a * b
on line 10, replacing the expression with the constant 420.

Unused assignment removal

Listing 4.6: Example to illustrate unused assignment re-
moval

1 int32_t unused_asg(int32_t a, int32_t b, int32_t c, int32_t d)
2 {
3 int32_t tmp = 42;
4

5 if (d > 0)
6 tmp = (a * b) + (a * c);
7 else
8 tmp = (a * b);
9

10 return tmp;
11 }

In Listing 4.6, the assignment to tmp on line 3 is not required because of the subsequent assign-
ments to tmp on both the if and else paths on lines 6 and 8 respectively. At -O0 and higher, the
compiler removes the assignment.

This improves performance because expressions not required for correctness are removed, result-
ing in fewer cycles.

4.2. Optimization levels 35

C2000™ C28x Optimization Guide, Release v1.2

Auto incremented addressing

Listing 4.7: Example to illustrate auto incremented address-
ing

int32_t addressing(int32_t* array, int16_t N)
{

int32_t sum = 0;
int32_t i = 0;

_nassert (N > 0);
for (i = 0; i < N; i++)

sum += array[i];

return sum;
}

At -O2 and higher, the compiler generates the efficient auto incremented addressing mode for the
loop in Listing 4.7, resulting in fewer instructions to execute the loop: 12 instructions at -O1 vs. 8
instructions at -O2.

4.2. Optimization levels 36

C2000™ C28x Optimization Guide, Release v1.2

Table 4.3: Assembly generated for loop at various optimiza-
tion levels

-O1 -O2 generates efficient *XARn++ ad-
dressing

||CL7||:
;*** g2:
;*** sum += array[i];
;*** if ((++i) <

→˓(long)N) goto g2;
MOVL

→˓ ACC,XAR5
LSL

→˓ ACC,1
ADDL

→˓ ACC,XAR4
MOVL

→˓ XAR6,ACC
ADDB

→˓ XAR5,#1
MOVL

→˓ ACC,P
ADDL

→˓ ACC,*+XAR6[0]
MOVL

→˓ P,ACC
MOV

→˓ AL,AR7
MOV

→˓ ACC,AL
CMPL

→˓ ACC,XAR5
B

→˓ ||CL7||,GT

||CL7||:
;*** g2:
;*** sum += *U$7++;
;*** if ((--L$1) != (-

→˓1L)) goto g2;
MOVL

→˓ ACC,XAR6
SUBB

→˓ XAR5,#1
ADDL

→˓ ACC,*XAR4++
MOVL

→˓ XAR6,ACC
MOVB

→˓ ACC,#0
SUBB

→˓ ACC,#1
CMPL

→˓ ACC,XAR5
B

→˓ ||CL7||,NEQ

Dead code elimination

Listing 4.8: Example to illustrate dead code elimination

int32_t dce(int32_t a, int32_t b, int32_t c, int32_t d)
{

int32_t tmp1 = a * b * c * d;
int32_t tmp;

(continues on next page)

4.2. Optimization levels 37

C2000™ C28x Optimization Guide, Release v1.2

(continued from previous page)

if (d > 0)
tmp = (a * b) + (a * c);

else
tmp = (a * b);

return tmp;
}

In Listing 4.8, the expression computed and assigned to tmp1 is dead because tmp1 is not used
anywhere in the function. Dead code elimination is a compiler technique to remove unused ex-
pressions. At -Ooff, the generated assembly contains 6 IMPYL instructions, corresponding to
each of the multiplies in the source. At -O0, the compiler is able to optimize the code and reduce
the number of IMPYL generated to 2 using a combination of dead code elimination and expression
simplification.

(d > 0L) ? (tmp = (b+c)*a) : (tmp = a*b);

4.2.2 Code size vs. speed tradeoffs

For details on code size vs. speed tradeoffs, refer to TMS320C28x Optimizing C/C++ Compiler
User’s Guide, Section 3.2, Controlling Code Size Versus Speed.

4.2.3 Optimization levels and debug

At higher levels of optimization, it gets progressively harder to debug (e.g. single-step) the appli-
cation. This is because at higher optimization levels, the compiler makes transformations to the
application to reduce its execution time, memory footprint, power consumption, or a combination
of these. These transformations significantly change the layout of the code and make it difficult,
or impossible, for the debugger to identify the source code that corresponds to a set of assembly
instructions.

The best approach is to perform initial development and debug with optimization disabled and then
enable optimizations. Refer to Enable debugging for details.

4.2. Optimization levels 38

http://downloads.ti.com/docs/esd/SPRU514/
http://downloads.ti.com/docs/esd/SPRU514/

C2000™ C28x Optimization Guide, Release v1.2

4.2.4 Optimizer interlist

Optimization makes normal source interlisting impractical, because the compiler extensively rear-
ranges the program.

The --src_interlist option interlists compiler comments with assembly source statements.
When this option is used with optimization enabled, the interlist feature does not run as a separate
pass. Instead, the compiler inserts comments into the code, indicating how the compiler has rear-
ranged and optimized the code. These comments appear in the assembly language file as comments
starting with ;**.

4.2. Optimization levels 39

C2000™ C28x Optimization Guide, Release v1.2

Table 4.4: Output of the --src_interlist option
C source Interlist output in the assembly file

float fmac(float *farray, int N)
{

int i;
float sum = 0.0f;

#pragma MUST_ITERATE(4, , 4)
#pragma UNROLL(2)
for (i = 1; i < N; i++)

sum += farray[i] *
→˓farray[i-1];

return sum;
}

||fmac||:
;*** -------------------
→˓---- U$13 = farray;
;*** -------------------
→˓---- L$1 = (N>>1)-1;
;*** 31 ------------------
→˓----- sum = 0.0F;
;*** -------------------
→˓---- #pragma MUST_ITERATE(2,
→˓ 16382, 2)
;*** -------------------
→˓---- #pragma UNROLL(1L)
;*** -------------------
→˓---- // LOOP BELOW UNROLLED
→˓BY FACTOR(2)
;*** -------------------
→˓---- #pragma LOOP_
→˓FLAGS(4103u)
;*** ---------------------
→˓--g2:
;*** 36 ------------------
→˓----- C$1 = U$13[1];
;*** 36 ------------------
→˓----- sum += *U$13++*C$1;
;*** 36 ------------------
→˓----- sum += U$13[1]*C$1;
;*** 35 ------------------
→˓----- ++U$13;
;*** 35 ------------------
→˓----- if ((--L$1) != (-1)
→˓) goto g2;
;*** 38 ------------------
→˓----- return sum;

From the listing in Table 4.4, it is clear that the loop has been unrolled 2x by the optimizer. The
original pragmas from the source have also been updated to account for the unrolling. For details
on loop unrolling, refer to Loop unrolling.

Warning: The --c_src_interlist option can have a negative effect on performance
and code size because it can prevent some optimizations from crossing C/C++ statement bound-
aries. So, the --src_interlist is recommended when optimizations are enabled. In CCS,

4.2. Optimization levels 40

C2000™ C28x Optimization Guide, Release v1.2

the --src_interlist option is available in the “Source interlist” dropdown under Build
-> C2000 Compiler -> Advanced Options -> Assember Options.

For details on the interlist option, refer to TMS320C28x Optimizing C/C++ Compiler User’s
Guide, Section 3.10, Using the Interlist Feature With Optimization.

4.3 Inlining

Inlining is the process of inserting code for a function at the point of call. Benefits:

• Saves the overhead of a function call.

• Allows the optimizer to optimize the function in the context of the surrounding code.

When an inline function is called, a copy of the C/C++ source code for the function is inserted at the
point of the call. Inlining function expansion can speed up execution by eliminating function call
overhead. This is particularly beneficial for very small functions that are called frequently or larger
functions that are called very few times (once or twice). Function inlining involves a tradeoff
between execution speed and code size, because the code is duplicated at each function call
site.

Table 4.5 lists cycle counts for executing the function sequence in Listing 4.9 without and with
inlining enabled.

foo1 calls foo2, which calls foo3 which in turn calls foo4. Using static enables the com-
piler to remove the function bodies after inlining. This reduces code size by removing the need to
have more than one copy of the function.

Table 4.5: Comparing code execution times for Flash vs.
RAM

Description Cycles on F28004x
With –opt_level=3. Inlining disabled using –auto_inline=0 58
With –opt_level=3 (Inlining is enabled by default at this optimiza-
tion level). The reduction in cycles is due to the elimination of call
instructions and additional optimization opportunities from inlin-
ing.

19

Listing 4.9: Function call sequence used to illustrate benefits
of inlining

1 float foo1(float f1, float f2)
2 {
3 return f1 * f2 + foo2(f1, f2);

(continues on next page)

4.3. Inlining 41

http://downloads.ti.com/docs/esd/SPRU514/
http://downloads.ti.com/docs/esd/SPRU514/

C2000™ C28x Optimization Guide, Release v1.2

(continued from previous page)

4 }
5

6 static float foo2(float f1, float f2)
7 {
8 return f1 * 2.0f - foo3(f1, f2);
9 }

10

11 static float foo3(float f1, float f2)
12 {
13 return f2 * 4.0f - foo4(f1, f2);
14 }
15

16 static float foo4(float f1, float f2)
17 {
18 return f1 * (f2 - f1);
19 }

There are different approaches to controlling the scope of inlining to manage the execution speed
- code size tradeoff.

• If the project is compiled with --opt_level=3 (-O3) or higher.

-O3 has the side effect of enabling inlining across all the files in the project and can result in a
significant code size increase. Use --auto_inline=[size]with --opt_level=3 to
place a limit on the size of the functions that are inlined. If required, inlining can be disabled
at -O3 using --auto_inline=0 or -oi0. Refer to the TMS320C28x Optimizing C/C++
Compiler User’s Guide, Section 3.5, “Automatic Inline Expansion (–auto_inline Option)” for
details.

• If the project is compiled with --opt_level=1 or --opt_level=2

Use static inline on specific functions that would benefit from being inlined into call
sites.

• To enforce inlining irrespective of optimization level, use either the attribute always_inline
or the pragma FUNC_ALWAYS_INLINE.

Refer to the TMS320C28x Optimizing C/C++ Compiler User’s Guide, Section 2.11, “Using Inline
Function Expansion” for details.

4.3. Inlining 42

http://downloads.ti.com/docs/esd/SPRU514/
http://downloads.ti.com/docs/esd/SPRU514/
http://downloads.ti.com/docs/esd/SPRU514/

C2000™ C28x Optimization Guide, Release v1.2

4.4 Pragmas

Pragma directives tell the compiler how to treat a certain function, object, or section of code.
This section covers pragmas that are relevant to improving performance of executed code. For the
complete set of pragmas supported by the compiler, refer to Section 6.10, Pragma Directives in the
TMS320C28x Optimizing C/C++ Compiler User’s Guide.

4.4.1 MUST_ITERATE

#pragma MUST_ITERATE (min, max, multiple)

The MUST_ITERATE pragma specifies to the compiler certain properties of a loop. The argu-
ments min and max are programmer-guaranteed minimum and maximum trip counts. The trip
count is the number of times a loop iterates. The trip count of the loop must be evenly divisible by
multiple.

Listing 4.10: Using MUST_ITERATE pragma to avoid gen-
erating loop bounds checks and enable unrolling by 4.

1 int16_t sum(int16_t* input, int16_t count)
2 {
3 int16_t sum = 0;
4 int16_t i = 0;
5

6 #pragma MUST_ITERATE(4, , 4)
7 for (i = 0; i < count; i++)
8 sum += input[i];
9

10 return sum;
11 }

The assembly code generated for Listing 4.10 when compiled with --opt_level=3 is shown
in Listing 4.11.

Listing 4.11: Assembly generated with MUST_ITERATE
pragma

||sum||:
MOV AH,AL
MOVB AL,#0
ASR AH,2
ADDB AH,#-1
MOVZ AR6,AH

||CL1||:
(continues on next page)

4.4. Pragmas 43

http://downloads.ti.com/docs/esd/SPRU514/

C2000™ C28x Optimization Guide, Release v1.2

(continued from previous page)

ADD AL,*XAR4++
ADD AL,*XAR4++
ADD AL,*XAR4++
ADD AL,*XAR4++
BANZ ||CL1||,AR6--
LRETR

Refer to the Assertions section for another approach to specifying loop information to the compiler.

Warning: When specifying a multiple via the MUST_ITERATE pragma, results of the pro-
gram are undefined if the trip count is not evenly divisible by multiple. Also, results of the
program are undefined if the trip count is less than the minimum or greater than the maximum
specified.

4.4.2 UNROLL

#pragma UNROLL(n)

If possible, the compiler unrolls the loop so there are n copies of the original loop. The compiler
only unrolls if it can determine that unrolling by a factor of n is safe. In order to increase the
chances the loop is unrolled, the compiler needs to know certain properties:

• The loop iterates a multiple of n times. This information can be specified to the compiler via
the multiple argument in the MUST_ITERATE pragma.

• The smallest possible number of iterations of the loop

• The largest possible number of iterations of the loop

In cases where the compiler is not able to analyze and determine these properties, the
MUST_ITERATE pragma can be used.

Specifying #pragma UNROLL(1) asks that the loop not be unrolled. Automatic loop unrolling
also is not performed in this case.

4.4. Pragmas 44

C2000™ C28x Optimization Guide, Release v1.2

4.4.3 FUNC_ALWAYS_INLINE

#pragma FUNC_ALWAYS_INLINE (func)

The pragma FUNC_ALWAYS_INLINE and the equivalent always_inline attribute force a func-
tion to be inlined (where it is legal to do so) unless --opt_level=off. That is, the pragma
FUNC_ALWAYS_INLINE forces function inlining even if the function is not declared as inline
and the --opt_level=0 or --opt_level=1.

For a discussion on the benefits of inlining, refer to section Inlining.

4.5 Assertions

The _nassert intrinsic generates no code and so is not a typical compiler intrinsic. Instead,
it tells the compiler that the expression declared with the assert function is true. It can be used
to assert that certain conditions are true, which in turn can be used by the compiler during its
optimizations.

Warning: Code can fail at runtime if the condition specified in the _nassert is not true.

Listing 4.12 illustrates an example of using _nassert. In this case, the programmer is guaran-
teeing that the loop executes at least once and count is a multiple of 4. This enables the compiler
to avoid generating code to check for count == 0 and peeled iterations during unrolling.

Listing 4.12: Using nassert to avoid generating unnecessary
checks

1 #include <stdint.h>
2

3 int16_t sum(int16_t* input, int16_t count)
4 {
5 int16_t sum = 0;
6 int16_t i = 0;
7

8 _nassert(count > 0 && count % 4 == 0);
9

10 for (i = 0; i < count; i++)
11 sum += input[i];
12

13 return sum;
14 }

Table 4.6 shows the assembly generated without and with the _nassert.

4.5. Assertions 45

C2000™ C28x Optimization Guide, Release v1.2

Table 4.6: Assembly comparison
Asm generated with _nassert (loop is un-
rolled 4x)

Asm generated without _nassert (loop is
unrolled 2x)

||sum||:
MOV AH,AL
MOVB AL,#0
ASR AH,2
ADDB AH,#-1
MOVZ AR6,AH

||CL1||:
ADD AL,*XAR4++
ADD AL,*XAR4++
ADD AL,*XAR4++
ADD AL,*XAR4++
BANZ ||CL1||,AR6--
LRETR

||sum||:
MOV AH,AL
MOVB XAR7,#0
BF ||CL4||,LEQ
CMPB AH,#2
BF ||CL1||,GEQ
MOV PL,#0
BF ||CL3||,UNC

||CL1||:
AND AH,AH,#0xfffe
MOV PL,AH
MOVL XAR5,XAR4
MOV AH,AL
ASR AH,1
ADDB AH,#-1
MOVZ AR6,AH

||CL2||:
MOV AH,AR7
ADD AH,*XAR5++
ADD AH,*XAR5++
MOVZ AR7,AH
BANZ ||CL2||,AR6--

||CL3||:
TBIT AL,#0
BF ||CL4||,NTC
MOVL ACC,XAR4
SETC SXM
ADD ACC,PL
MOVL XAR4,ACC
MOV AL,AR7
ADD AL,*+XAR4[0]
MOVZ AR7,AL

||CL4||:
MOV AL,AR7
LRETR

4.5. Assertions 46

C2000™ C28x Optimization Guide, Release v1.2

4.6 Restrict

4.6.1 Overview

The restrict keyword is a qualifier for a pointer variable’s type. By applying restrict to the
type declaration of a pointer p, the programmer is making the following guarantee to the compiler:

Within the scope of the declaration of p , only p or expressions based on p will be used to access
the object pointed to by p.

The compiler can take advantage of this guarantee to generate more efficient code.

Explanation of the guarantee:

1. Within the scope of the declaration of p

p is is a pointer variable. Examples are p1, s.p2, p3[i],and both p4 and p5 in
p4->p5[]. The program region over which the restriction applies is the scope
of p’s declaration.

2. only p or expressions based on p

This refers to the pointer in such accesses as *p, p[i], and p[i+3].

3. will be used to access the object pointed to by p

Only actual fetches and stores are accesses. p[i] is an access, but &p[i] and
p+i are not.

Warning: Incorrect usage of restrict can lead to the compiler generating incorrect code.
An example of incorrect usage is applying restrict to pointers that point to overlapping
objects in memory. Refer to Incorrect Usage for an example.

4.6.2 Example

The comparison below illustrates the effectiveness of using restrict. Adding the restrict
qualifier to the types for pointers a1 and b1 guarantees to the compiler that these pointers will not
be used to access the same memory location as t->sum1 or t->sum2. This enables the compiler
to generate a more efficient sequence of instructions for the loop.

In Table 4.7, the loop executes 256 times. The cycle counts were measured on F280049C with
code and data in RAM and with -O3 --opt_for_speed=5. With restrict, the cycle
count reduces from 3618 to 1209 cycles.

4.6. Restrict 47

C2000™ C28x Optimization Guide, Release v1.2

Table 4.7: Effectiveness of restrict.

#include <stdint.h>

typedef struct
{

float* a;
float* b;
float sum1;
float sum2;
int16_t N;

} Test;

void foo2(Test *t)
{

float* a1 = t->a;
float* b1 = t->b;

int i;
for (i = 0; i < t->N; i++)
{

t->sum1 += a1[i] * b1[i];
t->sum2 += a1[i] * a1[i];

}
}

#include <stdint.h>

typedef struct
{

float* a;
float* b;
float sum1;
float sum2;
int16_t N;

} Test;

void foo1(Test *t)
{

float* restrict a1 = t->a;
float* restrict b1 = t->b;

int i;
for (i = 0; i < t->N; i++)
{

t->sum1 += a1[i] * b1[i];
t->sum2 += a1[i] * a1[i];

}
}

3618 cycles 1209 cycles

Note: restrict is effective only at --opt_level=2 or higher.

4.6.3 Usage

Global variables

int *restrict p1;
int *restrict p2;
extern int A[];

Taken together, these file scope declarations of global variables guarantee to the compiler that if an
object is accessed using any one of p1, p2, or A[] it will not be accessed using any of the others.
Furthermore, since the file scope encompasses all other scopes, no accesses through local pointer
variables can access the object pointed to by p1 or p2.

4.6. Restrict 48

C2000™ C28x Optimization Guide, Release v1.2

Function parameters

The parameters in a function declaration have function prototype scope, which terminates at the
end of the declaration:

void foo(float *restrict v1, float *v2, int n);

In this function’s definition, the parameters have the same block scope as i:

void foo(float *restrict v1, float *v2, int n)
{

int i;
...

}

Restricting v1 guarantees to the compiler that the object pointed to by v1 does not overlap with
objects pointed to by other pointers in the body of foo().

Note: Arrays are passed by reference in C. To restrict-qualify an array parameter, the restrict
keyword should appear as follows:

void foo(short a[restrict 100]);

Local pointer variables

void foo(Test *t)
{

float* restrict a1 = t->a;
float* restrict b1 = t->b;

...
}

Adding restrict qualification to the pointer’s type in local variables a1 and b1 enables the pro-
grammer to restrict the nature of the accesses made via the pointer within the smaller scope of the
function.

4.6. Restrict 49

C2000™ C28x Optimization Guide, Release v1.2

4.6.4 Incorrect Usage

Listing 4.13 is an example of incorrect use of restrict. Pointers p and q are restrict-qualified.
However, the arguments to copy are such that the pointers overlap. This can lead to the
compiler generating invalid code.

Listing 4.13: Incorrect usage of restrict

void copy(int n, int *restrict p, int *restrict q)
{

while (n-- > 0) *p++ = *q++;
}

void test(void)
{

extern int d[100];
copy(50, d+1, d); // Breaks the restrict guarantee!

}

4.7 Loop unrolling

Loop unrolling is a technique to improve performance. Small loops are expanded such that an
iteration of the loop is replicated a certain number of times in the loop body. The number of times
an iteration is replicated is known as the unroll factor.

4.7.1 Benefits

• Reduce branch overhead This is especially significant for small loops. For example, the
loop in Listing 4.10 is unrolled by a factor of 4. From the assembly Listing 4.11, it is evident
that the branch overhead is reduced by a factor of 4 (one BANZ for 4 iterations vs. 1 without
unrolling).

There are additional benefits on C28x CPUs with FPU support:

• Generate RPTB for small loops - loop unrolling increases the number of instructions in the
loop body and enables the compiler to meet the minimum block size requirements for the
RPTB instruction.

• Improved floating-point performance - loop unrolling can improve performance by pro-
viding the compiler more instructions to schedule across the unrolled iterations. This reduces
the number of NOPs generated and also provides the compiler with a greater opportunity to
generate parallel instructions.

4.7. Loop unrolling 50

C2000™ C28x Optimization Guide, Release v1.2

Note: Loop unrolling will result in a code size increase because the compiler replicates the loop
body. #pragma UNROLL(1) can be used to prevent the compiler from unrolling the loop.

4.7.2 Performing unrolling

There are two ways in which loop unrolling can be performed:

1. The compiler can automatically unroll the loop. Listing 4.12 is an example of a loop that is
unrolled 4 times by the compiler.

2. The UNROLL pragma can be used to indicate to the compiler that the loop is a candidate for
unrolling. Refer to UNROLL for details.

4.8 Leveraging DMAC instructions

Dual Multiply and Accumulate (DMAC) instructions perform multiply-accumulate operations on
two adjacent signed integers (16-bit) simultaneously, optionally shifting the products. A multiply-
accumulate operation multiplies two numbers and adds that product to an accumulator.

4.8. Leveraging DMAC instructions 51

C2000™ C28x Optimization Guide, Release v1.2

Table 4.8: Generating DMAC from C source
C source Assembly output with DMAC

long dmac(int* array1, int*
→˓array2, int M)
{

// Assert to the compiler
→˓that both arrays are 32bit
→˓aligned

_nassert((long)array1 % 2 ==
→˓0);

_nassert((long)array2 % 2 ==
→˓0);

// Assert to the compiler
→˓that M is even and > 0

_nassert((M > 0) && (M % 2
→˓== 0));

int j;
long sum = 0;
for (j=0; j < M; j++)

sum += (long)array1[j] *
→˓array2[j];

return sum;
}

||dmac||:
ASR AL,1
MOVL XAR7,XAR5
ADDB AL,#-1
MOVZ AR5,AL
MOV P,#0
MOVB ACC,#0
RPT AR5

|| DMAC ACC:P,*XAR4++,
→˓*XAR7++

ADDL ACC,P
LRETR

Table 4.8 illustrates an approach to generating the DMAC instruction from C source. Refer to the
TMS320C28x Optimizing C/C++ Compiler User’s Guide, Section 3.15, “Compiler Support for
Generating DMAC Instructions” for details.

4.8. Leveraging DMAC instructions 52

http://downloads.ti.com/docs/esd/SPRU514/

CHAPTER

FIVE

COMMON ISSUES WITH OPTIMIZATIONS

A potential scenario during development is that the application works when compiler optimizations
are disabled (-Ooff), but fails with higher levels of optimization (-O1, -O2, -O3 or -O4).
Typical reasons for this include:

• Access to shared data from main program and Interrupt Service Routines (ISRs)

– Volatile qualifiers

– Atomic updates

• Accessing memory mapped peripheral registers without volatile

• Calling asm functions from C code without following C conventions

• Uninitialized variables

5.1 Shared Data

• Any global variable that is read/written by main() and one or more ISRs must be annotated
volatile

• Volatile indicates to the compiler that the variable might be modified by something external
to the obvious flow of the program such as an ISR

• This ensures the compiler preserves the number of volatile reads and writes to the global
variable exactly as written in C/C++ code. The compiler will not:

– Eliminate redundant reads or writes

– Re-order accesses

Table 2.12 illustrates the need for volatile when optimizations are enabled. Without the volatile
qualifier on flag, the compiler will remove the if block in main() because its analysis indicates
that flag is always 0 and the if condition is always false. volatile indicates to the compiler
that something outside of main(), in this case the ISR, can update flag.

53

C2000™ C28x Optimization Guide, Release v1.2

Table 5.1: Use of volatile
Main application Interrupt Service Routine

volatile int flag;
int x;

int main()
{

flag = 0;
...

if (flag == 1)
x++;

...
}

extern int flag;
interrupt void ISR(void)
{

...
flag = 1;
...

}

5.2 Peripheral access

• The volatile keyword must be used when accessing memory locations that represent memory
mapped peripherals.

• Such memory locations might change value in ways that the compiler cannot predict.

• This ensures the compiler preserves reads and writes to memory exactly as written in the C
code.

• A missing volatile qualifier can result in the compiler incorrectly optimizing away or re-
ordering reads/writes.

Listing 5.1: Using volatile for peripheral register access

1 static inline void
2 GPIO_writePin(uint32_t pin, uint32_t outVal)
3 {
4 volatile uint32_t *gpioDataReg;
5 uint32_t pinMask;
6

7 //
8 // Check the arguments.
9 //

10 ASSERT(GPIO_isPinValid(pin));
11

12 gpioDataReg = (uint32_t *)GPIODATA_BASE +
(continues on next page)

5.2. Peripheral access 54

C2000™ C28x Optimization Guide, Release v1.2

(continued from previous page)

13 ((pin / 32U) * GPIO_DATA_REGS_STEP);
14

15 pinMask = (uint32_t)1U << (pin % 32U);
16

17 if(outVal == 0U)
18 {
19 gpioDataReg[GPIO_GPxCLEAR_INDEX] = pinMask;
20 }
21 else
22 {
23 gpioDataReg[GPIO_GPxSET_INDEX] = pinMask;
24 }
25 }

5.3 Atomic access

• 16-bit reads/writes are atomic.

• 32-bit float reads/writes are atomic except: writing a 32-bit float constant is only atomic if
performed with a single opcode.

• 32-bit integer reads/writes:

• 32-bit reads/writes that use a single opcode are atomic.

• Atomic accesses within an ISR: By default, accesses within an ISR are atomic. The INTM
bit is automatically set (disable interrupts) by the hardware during the context switch. The
exception would be if the application re-enables interrupts within the ISR in order to nest
interrupts.

• If possible, group atomic accesses together or create a function to perform the sequence
disable-interrupts/atomic-accesses/enable-interrupts.

• For writes to global variables larger than 32 bits (64 bit long double, structures) disable/re-
enable interrupts around the write. This ensures the writer updates the entire variable before
the reader accesses it and avoids leaving the variable in an inconsistent or incomplete state.

For other atomic operations, there are two recommended approaches:

• Use an atomic compiler intrinsic if one is available. These are documented in the compiler
user’s guide (www.ti.com/lit/SPRU514). The description will say “in an atomic way”.

• Disable / enable interrupts around atomic operations using below intrinsics:
__disable_interrupts(); __enable_interrupts();

Listing 2.3 is a code snippet from the Digital Control Library in C2000Ware illustrating disabling
interrupts around updates to a struct to ensure atomic updates to the entire structure. Refer to the

5.3. Atomic access 55

C2000™ C28x Optimization Guide, Release v1.2

TMS320C28x Optimizing C/C++ Compiler User’s Guide, Table 7-6, TMS320C28x C/C++ Com-
piler Intrinsics for details on the __enable_interrupt() and __disable_interrupt()
intrinsics.

Listing 5.2: Disable interrupts to ensure atomic struct update

1 uint16_t val = __disable_interrupts();
2

3 p->Kp = p->sps->Kp;
4 p->Ki = p->sps->Ki;
5 p->Kd = p->sps->Kd;
6 p->Kr = p->sps->Kr;
7 p->c1 = p->sps->c1;
8 p->c2 = p->sps->c2;
9 p->Umax = p->sps->Umax;

10 p->Umin = p->sps->Umin;
11 DCL_restoreInts(v);
12

13 // If interrupts were originally enabled, re-enable them
14 if (0U == (val & 0x1))
15 __enable_interrupts();

5.4 Calling asm functions from C code

Any ASM functions called from C code must follow the C calling and register conventions. Re-
fer to the TMS320C28x Optimizing C/C++ Compiler User’s Guide, Sections 7.2 Register Con-
ventions, 7.3 Function Structure and Calling Conventions and 7.5 Interfacing C and C++ With
Assembly Language.

Any violation of these conventions can result in application passing with -Ooff, but failing at higher
optimization levels.

5.5 Uninitialized variables

• Using variables without initialization can lead to undefined behavior

• The behavior of an application with uninitialized variables can change with optimization
levels, making debug difficult

• Local variables

– Must be explicitly initialized in the application before any use

• Global variables

5.4. Calling asm functions from C code 56

http://downloads.ti.com/docs/esd/SPRU514/
http://downloads.ti.com/docs/esd/SPRU514/

C2000™ C28x Optimization Guide, Release v1.2

– C standard specifies that global (extern) and static variables without explicit initializa-
tions must be initialized to 0 before the program begins running

– C runtime initialization behavior differs across COFF and EABI

– Refer to the TMS320C28x Optimizing C/C++ Compiler User’s Guide for details - Sec-
tions 7.10.3 Automatic Initialization of Variables for COFF and 7.10.4 Automatic Ini-
tialization of Variables for EABI.

5.6 Interrupts

• RPT instructions are not interruptible, and can potentially delay or block interrupts from
executing * For example, if there is a memcpy() instruction in a background function, and
the compiler generates RPT instructions for this function, that section of code will be un-
interruptible * If the compiler generates RPT instructions within an ISR, interrupts will be
blocked, even if interrupt nesting is enabled * To avoid this issue, there are two compiler
options available - –no_rpt which will tell the compiler not to generate RPT instructions, or
–rpt_threshold which will limit the number of consecutive RPT instructions generated

5.6. Interrupts 57

http://downloads.ti.com/docs/esd/SPRU514/

CHAPTER

SIX

SUPPORT

To submit feedback on this guide or for C2000 related questions, please post to the C2000 micro-
controllers forum in the TI E2E™ support forums.

58

http://e2e.ti.com/support/microcontrollers/c2000/f/171
http://e2e.ti.com/support/microcontrollers/c2000/f/171

CHAPTER

SEVEN

CHANGELOG

Table 7.1: Version History
Version Date Summary
v1.3 November 2023 Updated Interrupts and RPT instructions, Atomic access

section
v1.2 April 2020 Added Common issues with optimizations section, up-

dated Profiling section.
v1.1 March 2020 Added link for PDF download, updated Important No-

tice
v1.0 March 2020 Initial version of guide.

59

CHAPTER

EIGHT

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DE-
SIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DE-
SIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS
IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND
IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF
THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely
responsible for (1) selecting the appropriate TI products for your application, (2) designing, vali-
dating and testing your application, and (3) ensuring your application meets applicable standards,
and any other safety, security, or other requirements. These resources are subject to change without
notice. TI grants you permission to use these resources only for development of an application that
uses the TI products described in the resource. Other reproduction and display of these resources
is prohibited. No license is granted to any other TI intellectual property right or to any third party
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its
representatives against, any claims, damages, costs, losses, and liabilities arising out of your use
of these resources.

TI’s products are provided subject to TI’s Terms of Sale
(https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does
not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

60

https://www.ti.com/legal/termsofsale.html

INDEX

C
C28x CPU, 5

F
Floating-Point Unit, 5
FPU, 5
FPU64, 5

T
TMU, 5
Trigonometric Math Unit, 5

V
VCU, 5
Viterbi, Complex Math and CRC

Unit, 5

61

	Introduction
	Software development flow
	Processing elements

	Initial Development
	Application Binary Interface (ABI)
	Bitfield vs. driverlib
	Initial set of compiler options
	Code considerations

	Profiling
	CCS Profile Clock
	CPUTimer
	CPUTimer with Function Entry/Exit Hooks

	Improving performance
	Memory
	Optimization levels
	Inlining
	Pragmas
	Assertions
	Restrict
	Loop unrolling
	Leveraging DMAC instructions

	Common issues with optimizations
	Shared Data
	Peripheral access
	Atomic access
	Calling asm functions from C code
	Uninitialized variables
	Interrupts

	Support
	Changelog
	IMPORTANT NOTICE AND DISCLAIMER
	Index

